功能:计算张量的指定维度上的元素的平均值,一般用作降维或者是求得平均值
reduce_mean(
input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None
)
参数 | 必选 | 类型 | 说明 |
---|---|---|---|
input_tensor | 是 | 待减少的张量 | |
axis | 否 | 要减少的尺寸,为None则减少所有维度 | |
keep_dims | 否 | bool | 是否降维 |
name | 否 | string | 操作名称 |
reduction_indices | 否 | 在以前版本中用来指定轴,已弃用 |
以一个维度是2,形状是[2,3]的tensor举例:摘自-牧野-
import tensorflow as tf
x = [[1,2,3],
[1,2,3]]
xx = tf.cast(x,tf.float32)
mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)
with tf.Session() as sess:
m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1])
print m_a
print m_0
print m_1
2.0
[1. 2. 3.]
[2. 2.]
keep_dims=True
[[2.]]
[1. 2. 3.]
[2. 2.]