(TensorFlow)——tf.variable_scope和tf.name_scope详解

作者在学习TensorFlow时,对tf.variable_scope和tf.name_scope的作用未深入了解,遂转载博客记录二者区别。tf.variable_scope可让tf.get_variable和tf.Variable得到的变量有相同命名,tf.name_scope仅对tf.Variable的变量有效,并给出了相关示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这几天学习tensorflow,看到关于tf.variable_scope和tf.name_scop,一直没有深入了解其中的作用。转载一篇博客:

Tensorflow中tf.name_scope() 和 tf.variable_scope() 的区别 记录一下作用,一面以后忘记。

在这里简单点说下:

tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量

tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量

例如:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.variable_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

输出:

V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0

例子2:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

换成下面的代码就可以执行

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
	# a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	# a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	# print a1.name
	print a2.name
	# print a3.name
	print a4.name

输出:

V1/a2:0
V2/a2:0

关于我之前问你的代码,有几个问题,@property是什么用法 def call(self, inputs, state, scope=‘convLSTM’): “”“Long short-term memory cell (LSTM).”“” with tf.variable_scope(scope or type(self).name): # “BasicLSTMCell” # Parameters of gates are concatenated into one multiply for efficiency. if self._state_is_tuple: c, h = state else: c, h = tf.split(state, 2, 3) concat = _conv_linear([inputs, h], self.filter_size, self.num_features * 4, True) # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = tf.split(concat, 4, 3) new_c = (c * tf.nn.sigmoid(f + self._forget_bias) + tf.nn.sigmoid(i) * self._activation(j)) new_h = self._activation(new_c) * tf.nn.sigmoid(o) if self._state_is_tuple: new_state = LSTMStateTuple(new_c, new_h) else: new_state = tf.concat([new_c, new_h], 3) return new_h, new_state 这一段我需要更详细解释 def _conv_linear(args, filter_size, num_features, bias, bias_start=0.0, scope=None): dtype = [a.dtype for a in args][0] with slim.arg_scope([slim.conv2d], stride=1, padding='SAME', activation_fn=None, scope=scope, weights_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=1.0e-3), biases_initializer=bias and tf.constant_initializer(bias_start, dtype=dtype)): if len(args) == 1: res = slim.conv2d(args[0], num_features, [filter_size[0], filter_size[1]], scope='LSTM_conv') else: res = slim.conv2d(tf.concat(args, 3), num_features, [filter_size[0], filter_size[1]], scope='LSTM_conv') return res 这一段也详细解释
03-21
WARNING:tensorflow:From /root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/compat/v2_compat.py:96: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version. Instructions for updating: non-resource variables are not supported in the long term 2025-07-26 19:47:00.316548: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1 2025-07-26 19:47:00.379323: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: pciBusID: 0000:39:00.0 name: NVIDIA GeForce RTX 4090 computeCapability: 8.9 coreClock: 2.52GHz coreCount: 128 deviceMemorySize: 23.55GiB deviceMemoryBandwidth: 938.86GiB/s 2025-07-26 19:47:00.379583: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory 2025-07-26 19:47:00.379632: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory 2025-07-26 19:47:00.380958: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10 2025-07-26 19:47:00.381316: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10 2025-07-26 19:47:00.381386: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2025-07-26 19:47:00.381440: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcusparse.so.10'; dlerror: libcusparse.so.10: cannot open shared object file: No such file or directory 2025-07-26 19:47:00.381492: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory 2025-07-26 19:47:00.381501: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1598] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2025-07-26 19:47:00.381919: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA 2025-07-26 19:47:00.396214: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2000000000 Hz 2025-07-26 19:47:00.405365: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f45c0000b60 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2025-07-26 19:47:00.405415: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version 2025-07-26 19:47:00.409166: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix: 2025-07-26 19:47:00.409199: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] WARNING:tensorflow:From /root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py:1089: Layer.apply (from tensorflow.python.keras.engine.base_layer_v1) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. loaded ./checkpoint/decom_net_train/model.ckpt loaded ./checkpoint/illumination_adjust_net_train/model.ckpt No restoration pre model! (480, 640, 3) (680, 720, 3) (415, 370, 3) Start evalating! 0 Traceback (most recent call last): File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1365, in _do_call return fn(*args) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1350, in _run_fn target_list, run_metadata) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1443, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value Restoration_net/de_conv6_1/biases [[{{node Restoration_net/de_conv6_1/biases/read}}]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "evaluate.py", line 92, in <module> restoration_r = sess.run(output_r, feed_dict={input_low_r: decom_r_low, input_low_i: decom_i_low}) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 958, in run run_metadata_ptr) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1181, in _run feed_dict_tensor, options, run_metadata) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1359, in _do_run run_metadata) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1384, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value Restoration_net/de_conv6_1/biases [[node Restoration_net/de_conv6_1/biases/read (defined at /root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/variables.py:256) ]] Original stack trace for 'Restoration_net/de_conv6_1/biases/read': File "evaluate.py", line 28, in <module> output_r = Restoration_net(input_low_r, input_low_i) File "/root/Python/KinD-master/KinD-master/model.py", line 70, in Restoration_net conv6=slim.conv2d(up6, 256,[3,3], rate=1, activation_fn=lrelu,scope='de_conv6_1') File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/arg_scope.py", line 184, in func_with_args return func(*args, **current_args) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py", line 1191, in convolution2d conv_dims=2) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/arg_scope.py", line 184, in func_with_args return func(*args, **current_args) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py", line 1089, in convolution outputs = layer.apply(inputs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 324, in new_func return func(*args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 1695, in apply return self.__call__(inputs, *args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 547, in __call__ outputs = super(Layer, self).__call__(inputs, *args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 758, in __call__ self._maybe_build(inputs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 2131, in _maybe_build self.build(input_shapes) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/keras/layers/convolutional.py", line 172, in build dtype=self.dtype) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 460, in add_weight **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer_v1.py", line 447, in add_weight caching_device=caching_device) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/training/tracking/base.py", line 743, in _add_variable_with_custom_getter **kwargs_for_getter) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 1573, in get_variable aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 1316, in get_variable aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 551, in get_variable return custom_getter(**custom_getter_kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py", line 1793, in layer_variable_getter return _model_variable_getter(getter, *args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/layers/layers.py", line 1784, in _model_variable_getter aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/arg_scope.py", line 184, in func_with_args return func(*args, **current_args) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/variables.py", line 328, in model_variable aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/arg_scope.py", line 184, in func_with_args return func(*args, **current_args) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tf_slim/ops/variables.py", line 256, in variable aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 520, in _true_getter aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 939, in _get_single_variable aggregation=aggregation) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 259, in __call__ return cls._variable_v1_call(*args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 220, in _variable_v1_call shape=shape) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 198, in <lambda> previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 2614, in default_variable_creator shape=shape) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 263, in __call__ return super(VariableMetaclass, cls).__call__(*args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 1666, in __init__ shape=shape) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 1854, in _init_from_args self._snapshot = array_ops.identity(self._variable, name="read") File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/util/dispatch.py", line 180, in wrapper return target(*args, **kwargs) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 282, in identity ret = gen_array_ops.identity(input, name=name) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 3901, in identity "Identity", input=input, name=name) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 744, in _apply_op_helper attrs=attr_protos, op_def=op_def) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3327, in _create_op_internal op_def=op_def) File "/root/Python/conda_lit/kind/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1791, in __init__ self._traceback = tf_stack.extract_stack()
最新发布
07-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值