PTA 甲级 1003 Emergency (25 分) 迪杰斯特拉 最短路径的条数

本文探讨了一种结合最短路径寻找与资源优化的算法,通过实例讲解如何在多个城市间寻找从C1到C2的最短路径,同时确保路径上能够集结最多的救援队伍。算法采用迪杰斯特拉算法进行路径寻优,并在过程中同步更新最短路径数量及救援队总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

大意:有N个城市,M 条道路,从C1城市出发,到C2城市结束。

接着给你这N个城市每个城市的救援队的数量。

求出C1-->C2的最短路径的数量 , 同时最短路径中能够集结的最大救援队数量。

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input Specification:

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤500) - the number of cities (and the cities are numbered from 0 to N−1), M - the number of roads, C​1​​ and C​2​​ - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c​1​​, c​2​​ and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C​1​​ to C​2​​.

Output Specification:

For each test case, print in one line two numbers: the number of different shortest paths between C​1​​ and C​2​​, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input:

5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output:

2 4

分析

参考博客:https://www.liuchuo.net/archives/2359 

比较简答的思考方式是,在更新最短路径的时候,同时更新最短路径的数量和救援人员的数量

dis[i]表示从出发点到i结点最短路径的路径长度,

num[i]表示从出发点到i结点最短路径的条数,

w[i]表示从出发点到i点救援队的数目之和

weight[i]表示第i点的救援队数目

更新的核心代码,是在迪杰斯特拉算法的松弛阶段

for(int v = 0 ; v < n ; v++ )
    if(vis[v] == false && e[u][v] != inf)
     {
           if(dis[u] + e[u][v] < dis[v]) //如果起点到v点可以松弛
           {
                 dis[v] = dis[u] + e[u][v]; //立马更新从起点到第v点的最短路径长度
                 num[v] = num[u];//v点的最短路径的条数 == u点最短路径条数(u是当前找到的最优点)
                 w[v] = w[u] + weight[v];//v点救援队的数量要增加
            }
            else if(dis[u] + e[u][v] == dis[v])//如果相等
            {
                 num[v] = num[v] + num[u];//最短路径的条数肯定需要增加
                 if(w[u] + weight[v] > w[v])//如果救援队数量能变多就更好了
                      w[v] = w[u] + weight[v];
             }
    }

还有一种是使用dfs先mark一下。

代码

#include<iostream>
#include <string.h>
#include <algorithm>
using namespace std;
int n, m, c1, c2;
int e[510][510], weight[510], dis[510], num[510], w[510];
bool vis[510];
const int inf = 0x3f3f3f3f;
int main()
{
    scanf("%d%d%d%d" , &n , &m , &c1 , &c2);
    for(int i = 0; i < n ; i++)
        cin >> weight[i];

    //初始化
    for(int i = 0 ; i < 510 ; i++)
    {
        for(int j = 0 ; j < 510 ; j++)
        {
            if(i == j) e[i][j] = 0;
            else e[i][j] = inf;
        }
    }
    memset(dis , inf , sizeof(dis));

    for(int i = 0 ; i < m ; i++)
    {
        int a , b ,c ;
        cin >> a >> b >> c;
        e[a][b] = e[b][a] = c;
    }
    dis[c1] = 0;
    w[c1] = weight[c1];
    num[c1] = 1;

    //Dij
    for(int i = 0 ; i < n ;i++)
    {
        int u = 0;
        int minn = inf;
        for(int j = 0 ; j < n ; j++)
        {
            if(vis[j] == false && dis[j] < minn)
            {
                u = j;
                minn = dis[j];
            }
        }
       // if(u == -1) break;
        vis[u] = true;
        for(int v = 0 ; v < n ; v++ )
        {
            if(vis[v] == false && e[u][v] != inf)
            {
                if(dis[u] + e[u][v] < dis[v])
                {
                    dis[v] = dis[u] + e[u][v];
                    num[v] = num[u];
                    w[v] = w[u] + weight[v];
                }
                else if(dis[u] + e[u][v] == dis[v])
                {
                    num[v] = num[v] + num[u];
                    if(w[u] + weight[v] > w[v])
                        w[v] = w[u] + weight[v];
                }
            }
        }
    }
    cout << num[c2] << " " << w[c2] ;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值