数据:6个画像,每个画像中有700个标签。
解释:同一标签下不同画像对应的数据,我要对此数据做聚类,
结果展示:
后端代码显示
def kmeans_img(request):
#获取前段数据
UPLOAD_ROOT=os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'static/img')
brand_name = request.POST.get('brand_name', '').strip()
package_name_arr = request.POST.getlist('package_name_arr[]', [])
label_lists = request.POST.getlist('label_lists[]', [])
font_name =request.POST.get('font_name', '0').strip()
K_value =request.POST.get('K_value', '2').strip()
#局部放大后设置每个轴的最大最小值
x_min =request.POST.get('x_min', None)
x_max =request.POST.get('x_max', None)
y_min =request.POST.get('y_min', None)
y_max =request.POST.get('y_max', None)
font_size_diy=int(request.POST.get('font_size_diy')) if request.POST.get('font_size_diy') else 7
font_color_diy=request.POST.get('font_color_diy') if request.POST.get('font_color_diy') else '000000'
font_color_diy='#'+font_color_diy
point_size_diy=int(request.POST.get('point_size_diy')) if request.POST.get('point_size_diy') else 5
# 挖除的包的id列表
except_packages_list = request.POST.getlist('except_packages_list[]', [])
# 挖除的包的name列表
except_checked_packname_arr = request.POST.getlist('except_checked_packname_arr[]', [])
# 1为重新聚类 0为挖除点
check_loop_k =request.POST.get('check_loop_k', '0').strip()
if check_loop_k is '1':
package_name_arr = list(set(package_name_arr).difference(set(except_packages_list)))
packages =CrowdPerspective.objects.filter(brand=brand_name,package_id__in=package_name_arr,label__in=label_lists).values("package_name","package_id","package_count").order_by("package_name").annotate(total_pages=Count("package_id")).all()
print('*****')
packages_df