VGG是2014年由牛津大学研究组提出的,获得了2014年ImageNet比赛中定位任务的第一名和分类任务的第二名。
根据不同的需要,VGG网络可以有很多不同的结构,下图是论文中给出的几种搭建方式。
我们选择其中的ABDE四种结构来搭建,下面是模型的代码:
import torch.nn as nn
import torch
class VGG(nn.Module):
def __init__(self, features, class_num=1000, init_weights=False):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential( #分类网络结构
nn.Dropout(p=0.5), #50%失活,减少过拟合
nn.Linear(512*7*7, 2048), #第一层全连接层,原论文是4096
nn.ReLU(True),
nn.Dropout(p=0.5),
nn.Linear(2048, 2048),
nn.ReLU(True),
nn.Linear(2048, class_num)
)
if init_weights: #是否初始化
self._initialize_weights()
def forward(self, x): #前向传播
# N x 3 x 224 x 224
x = self.features(x) #先提取特征
# N x 512 x 7 x 7
x = torch.flatten(x, start_dim=1) #展平处理
# N x 512*7*7
x = self.classifier(x) #分类网络
return x
def _initialize_weights(self): #初始化权重函数
for m in self.modules():
if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
nn.init.xavier_uniform_(m.weight) #xavier初始化方法
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
# nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_features(cfg: list): #提取特征的函数
layers = [] #定义一个空列表
in_channels = 3
for v in cfg: #遍历配置列表
if v == "M":
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
layers += [conv2d, nn.ReLU(True)]
in_channels = v #改变深度
return nn.Sequential(*layers) #非关键字参数传入
cfgs = { #对应不同配置的网络
#数字代表卷积核个数,字母代表池化层参数
'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg(model_name="vgg16", **kwargs): #实例化模型
try:
cfg = cfgs[model_name] #传入字典
except:
print("Warning: model number {} not in cfgs dict!".format(model_name))
exit(-1)
model = VGG(make_features(cfg), **kwargs) #1特征,2可变长度的字典变量,包含分类个数和是否初始化
return model
然后是训练的代码:
import torch.nn as nn
from torchvision import transforms, datasets
import json
import os
import torch.optim as optim
from model import vgg
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
"val": transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
data_root = os.path.abspath(os.path.join(os.getcwd(), "./")) # get data root path
image_path = data_root + "/data/flower_data/" # flower data set path,得到花文件的路径
train_dataset = datasets.ImageFolder(root=image_path+"train",
transform=data_transform["train"])
train_num = len(train_dataset)
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
batch_size = 32
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=0)
validate_dataset = datasets.ImageFolder(root=image_path + "val",
transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=0)
# test_data_iter = iter(validate_loader)
# test_image, test_label = test_data_iter.next()
model_name = "vgg16"
net = vgg(model_name=model_name, class_num=5, init_weights=True) #实例化vgg模型
net.to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.0001)
best_acc = 0.0
save_path = './{}Net.pth'.format(model_name)
for epoch in range(30):
# train
net.train()
running_loss = 0.0
for step, data in enumerate(train_loader, start=0):
images, labels = data
optimizer.zero_grad()
outputs = net(images.to(device))
loss = loss_function(outputs, labels.to(device))
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
# print train process
rate = (step + 1) / len(train_loader)
a = "*" * int(rate * 50)
b = "." * int((1 - rate) * 50)
print("\rtrain loss: {:^3.0f}%[{}->{}]{:.3f}".format(int(rate * 100), a, b, loss), end="")
print()
# validate
net.eval()
acc = 0.0 # accumulate accurate number / epoch
with torch.no_grad():
for data_test in validate_loader:
test_images, test_labels = data_test
optimizer.zero_grad()
outputs = net(test_images.to(device))
predict_y = torch.max(outputs, dim=1)[1]
acc += (predict_y == test_labels.to(device)).sum().item()
accurate_test = acc / val_num
if accurate_test > best_acc:
best_acc = accurate_test
torch.save(net.state_dict(), save_path)
print('[epoch %d] train_loss: %.3f test_accuracy: %.3f' %
(epoch + 1, running_loss / step, accurate_test))
print('Finished Training')
我这里选择训练最常用的VGG16网络,迭代30次之后可以达到0.7以上的准确率。
用训练好的网络来预测一张玫瑰的图片:
import torch
from model import vgg
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json
data_transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# load image
img = Image.open("./data/predict/roses1.jpg")
plt.imshow(img)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)
# read class_indict
try:
json_file = open('./class_indices.json', 'r')
class_indict = json.load(json_file)
except Exception as e:
print(e)
exit(-1)
# create model
model = vgg(model_name="vgg16", class_num=5)
# load model weights
model_weight_path = "./vgg16Net.pth"
model.load_state_dict(torch.load(model_weight_path))
model.eval()
with torch.no_grad():
# predict class
output = torch.squeeze(model(img))
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)],predict[predict_cla].item())
plt.show()
预测结果正确。