Pointnet源码阅读学习---part_seg/

本文深入探讨了点云部分分割技术,重点介绍了part_seg模块,包括pointnet_part_seg.py、test.py、train.py等核心文件。这些组件共同实现对点云数据的精确分割,为三维场景理解和目标识别提供了关键技术支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

part_seg负责点云的部分分割, 包含pointnet_part_seg.py、test.pytrain.py
结构图如下:
在这里插入图片描述

这是pointnet++的官方源码中的test_partseg.py的代码,在命令行中输入python test_partseg.py --normal --log_dir pointnet2_part_seg_msg后尝试运行,报错Namespace(batch_size=24, gpu='0', num_point=2048, log_dir='pointnet2_part_seg_msg', normal=True, num_votes=3) The number of test data is: 2874 Traceback (most recent call last): File "E:\Pointnet_Pointnet2_pytorch-master\test_partseg.py", line 167, in <module> main(args) File "E:\Pointnet_Pointnet2_pytorch-master\test_partseg.py", line 83, in main checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth') File "E:\anaconda\envs\pointnet2\lib\site-packages\torch\serialization.py", line 1529, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint. (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message. WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([numpy.core.multiarray.scalar])` or the `torch.serialization.safe_globals([numpy.core.multiarray.scalar])` context manager to allowlist this global if you trust this class/function. Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html. 请你根据提供的代码解决这个报错
06-06
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值