本文翻译和精简自stanford cs224n lec 6.
1. Language Model
通俗的说,language model就是用来预测下一个出现的词的概率,即:
P(x(t+1)∣x(t),x(t−1),...x(1))P(x^{(t+1)}|x^{(t)},x^{(t-1)},...x^{(1)})P(x(t+1)∣x(t),x(t−1),...x(1))
1.1 统计学方法:n-gram language model
简化:一个词出现的概率只和它前面的n-1个词有关系,这就是"n-gram"的含义。因此有:
P(x(t+1)∣x(t),x(t−1),...x(1))=P(x(t+1)∣x(t),x(t−1),...x(t−n+2))=P(x(t+1),x(t),x(t−1),...x(t−n+2))P(x(t),x(t−1),...x(t−n+2))=count(x(t+1),x(t),x(t−1),...x(t−n+2))count(x(t),x(t−1),...x(t−n+2))P(x^{(t+1)}|x^{(t)},x^{(t-1)},...x^{(1)}) =P(x^{(t+1)}|x^{(t)},x^{(t-1)},...x^{(t-n+2)}) \\ = \frac{P(x^{(t+1)},x^{(t)},x^{(t-1)},...x^{(t-n+2)})}{P(x^{(t)},x^{(t-1)},...x^{(t-n+2)})} \\ = \frac{count(x^{(t+1)},x^{(t)},x^{(t-1)},...x^{(t-n+2)})}{count(x^{(t)},x^{(t-1)},...x^{(t-n+2)})} P(x(t+1)∣x(t),x(t−1),...x(1))=P(x(t+1)∣x(t),x(t−1),...x(t−n+2))=P(x(t),x(t−1),...x(t−n+2))P(x(t+1),x