使用简单的Keras 的序贯模型
大的逻辑结构:model = Sequential() -->model.add() -->model.compile()–>model.fit()–>model.evaluate()
model = Sequtntial()没啥好说的了
model.add():
Conv2D()–>MaxPooling2D()–>Dropout() -->Flatten()–>Dense()
Conv2D():
卷积核数目,kernel_size,activation,input_shape(第一层要)
32,(3,3),‘relu’,input_shape(大段代码: ‘mnist.npz’ (到这步之前以后也要拓展)–>load进来–>reshape–>astype–> /=255–>keras.utils.to_categorical–>得到最终的(x_train, y_train), (x_test, y_test))
input_shape = (img_rows,img_cols,1) if ‘channels last’ (图像的行数,图像的列数,图像的通道数)
**总结:**activation = ‘softmax’ 只用于最后一层全连接层,卷积层一般用relu
送入全连接层之前要加一层Flatten()
model.compile():
loss —>optimizer —>metrics
keras.losses.categroical_crossentropy ,keras.optimizers.Adadleta(),[‘accuracy’]
model.fit():
x_train,y_train -->batch_