Milk Patterns poj 3261 后缀数组 - 可重叠的K次最长重复子串

本文介绍了一种通过二分查找结合后缀数组技术来解决最长重复子串问题的方法。该方法能够有效地找到一个序列中最长的、至少重复K次的子串长度,适用于奶牛产奶质量规律的研究等场景。

poj 3261

题目连接: 点击打开链接

 

Farmer John has noticed that the quality of milk given by his cows varies from day to day. On further investigation, he discovered that although he can't predict the quality of milk from one day to the next, there are some regular patterns in the daily milk quality.

To perform a rigorous study, he has invented a complex classification scheme by which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, and has recorded data from a single cow over N (1 ≤ N ≤ 20,000) days. He wishes to find the longest pattern of samples which repeats identically at least K (2 ≤ K ≤ N) times. This may include overlapping patterns -- 1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.

Help Farmer John by finding the longest repeating subsequence in the sequence of samples. It is guaranteed that at least one subsequence is repeated at least Ktimes.

Input

Line 1: Two space-separated integers: N and K 
Lines 2.. N+1: N integers, one per line, the quality of the milk on day i appears on the ith line.

Output

Line 1: One integer, the length of the longest pattern which occurs at least K times

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

 

            题意:找出出现k次的可重叠的最长子串的长度

                求可重叠的k次最长重复子串

                分析:

                    先二分答案,然后将后缀分成若干组。不同的是,这里要判断的是有没有一个组的后缀个数不小于

                    K,如果有,那么存在k个相同的子串满足条件,否则不存在,算法时间复杂度:O(nlongn)

        

/*
@Author: Top_Spirit
@Language: C++
*/
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std ;
typedef unsigned long long  ull ;
typedef long long ll ;
//const int Maxn = 1e5 + 10 ;
const int INF = 0x3f3f3f3f ;
const ull seed = 233 ;
const ull MOD = 1e4 + 7 ;
const int maxn = 2e4 + 10;
const int Max = 10000;

int sa[maxn],Rank[maxn],height[maxn];
int wa[maxn],wb[maxn],wv[maxn],Ws[maxn];
int num[maxn],s[maxn];

int cmp (int *r,int a,int b,int l){
    return r[a] == r[b] && r[a + l] == r[b + l];
}

void get_sa (int * r, int n, int m){
    int i, j , p, *x = wa,*y = wb,*t;
    for (i = 0; i < m; i++) Ws[i] = 0;
    for (i = 0; i < n; i++) Ws[x[i] = r[i]]++;
    for (i = 1; i < m; i++) Ws[i] += Ws[i - 1];
    for (i = n - 1; i >= 0; i--) sa[--Ws[x[i]]] = i;
    for (j = 1, p = 1 ; p < n; j *= 2, m = p){
        for (p = 0, i = n - j; i < n; i++) y[p++] = i;
        for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
        for (i = 0; i < n; i++) wv[i] = x[y[i]];
        for (i = 0; i < m; i++) Ws[i] = 0;
        for (i = 0; i < n; i++) Ws[wv[i]]++;
        for (i = 0; i < m; i++) Ws[i] += Ws[i - 1];
        for (i = n - 1; i >= 0; i--) sa[--Ws[wv[i]]] = y[i];
        for (t = x, x = y, y = t,p = 1, x[sa[0]] = 0, i = 1; i < n; i++){
            x[sa[i]] = cmp(y,sa[i - 1], sa[i], j) ? p -1 : p++;
        }
    }
}
void get_height(int *r,int n){
    int k = 0, j;
    for (int i = 1; i <= n; i++) Rank[sa[i]] = i;
    for (int i = 0; i < n; height[Rank[i++]] = k){
        for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++);
    }
}
bool f (int n, int k, int x){
    for (int i = 2; i <= n; i++){
        if (height[i] >= x){
            int cmt = 1;
            for (i; i <= n && height[i] >= x; i++) cmt++;
            if (cmt >= k) return 1;
        }
    }
    return 0;
}

int solve (int n, int k){
    int ans = 0;
    int ls = 0, rs = n;
    while (ls <= rs){
        int mid = (ls + rs) / 2;
        if (f(n,k,mid)) ans = mid, ls = mid + 1;
        else rs = mid - 1;
    }
    return ans ;
}
int main (){
    int n , k ;
    scanf("%d%d",&n,&k);
    for (int i = 0 ;i < n; i++){
        scanf("%d",&num[i]);
    }
    num[n] = 0;
    get_sa(num,n+1,Max);
    get_height(num,n);
//    for (int i = 0; i < n; i++){
//        printf("height - > %d ",height[i]);
//    }
    printf("%d\n",solve(n,k));
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值