Linux电源管理(8)_Wakeup count功能

文章详细介绍了wakeupcount在Linux电源管理系统中的功能和实现逻辑,它是解决系统挂起(suspend)和唤醒事件同步的关键。wakeupcount通过读写wakeup_count文件与用户空间交互,确保在没有未处理的唤醒事件时安全地进行系统挂起。在挂起过程中,wakeupcount会检查是否有新的唤醒事件发生,如果有,则终止挂起操作。此外,文章还讨论了pm_get_wakeup_count和pm_save_wakeup_count等关键函数的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

Wakeup count是Wakeup events framework的组成部分,用于解决“system suspend和system wakeup events之间的同步问题”。本文将结合“Linux电源管理(6)_Generic PM之Suspend功能”和“Linux电源管理(7)_Wakeup events framework”两篇文章,分析wakeup count的功能、实现逻辑、背后的思考,同时也是对这两篇文章的复习和总结

2. wakeup count在电源管理中的位置

wakeup count的实现位于wakeup events framework中(drivers/base/power/wakeup.c),主要为两个模块提供接口:通过PM core向用户空间提供sysfs接口;直接向autosleep(请参考下一篇文章)提供接口。

在这里插入图片描述

3. wakeup count的功能

wakeup count的功能是suspend同步,实现思路是这样的:

1)任何想发起电源状态切换的实体(可以是用户空间电源管理进程,也可以是内核线程,简称C),在发起状态切换前,读取系统的wakeup counts(该值记录了当前的wakeup event总数),并将读取的counts告知wakeup events framework。

2)wakeup events framework记录该counts到一个全局变量中(saved_count)

3)随后C发起电源状态切换(如STR),执行suspend过程。

4)在suspend的过程中,wakeup events framework照旧工作(直到系统中断被关闭),上报wakeup events,增加wakeup events counts。

5)suspend执行的一些时间点(可参考“Linux电源管理(6)_Generic PM之Suspend功能”),会调用wakeup events framework提供的接口(pm_wakeup_pending),检查是否有wakeup没有处理。

6)检查逻辑很简单,就是比较当前的wakeup counts和saved wakeup counts(C发起电源状态切换时的counts),如果不同,就要终止suspend过程。

4. wakeup count的实现逻辑

4.1 一个例子

在进行代码分析之前,我们先用伪代码的形式,写出一个利用wakeup count进行suspend操作的例子,然后基于该例子,分析相关的实现。

   1: do {
   2:     ret = read(&cnt, "/sys/power/wakeup_count");
   3:     if (ret) {
   4:         ret = write(cnt, "/sys/power/wakeup_count");
   5:     } else {
   6:         countine;
   7:     }
   8: } while (!ret);
   9:  
  10: write("mem", "/sys/power/state");
  11:  
  12: /* goto here after wakeup */
例子很简单:

a)读取wakeup count值,如果成功,将读取的值回写。否则说明有正在处理的wakeup events,continue。

b)回写后,判断返回值是否成功,如果不成功(说明读、写的过程中产生了wakeup events),继续读、写,直到成功。成功后,可以触发电源状态切换。

4.2 /sys/power/wakeup_count

wakeup_count文件是在kernel/power/main.c中,利用power_attr注册的,如下(大家可以仔细研读一下那一大段注释,内核很多注释写的非常好,而好的注释,就是软件功力的体现):

#ifdef CONFIG_PM_SLEEP
/*
 * The 'wakeup_count' attribute, along with the functions defined in
 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
 * handled in a non-racy way.
 *
 * If a wakeup event occurs when the system is in a sleep state, it simply is
 * woken up.  In turn, if an event that would wake the system up from a sleep
 * state occurs when it is undergoing a transition to that sleep state, the
 * transition should be aborted.  Moreover, if such an event occurs when the
 * system is in the working state, an attempt to start a transition to the
 * given sleep state should fail during certain period after the detection of
 * the event.  Using the 'state' attribute alone is not sufficient to satisfy
 * these requirements, because a wakeup event may occur exactly when 'state'
 * is being written to and may be delivered to user space right before it is
 * frozen, so the event will remain only partially processed until the system is
 * woken up by another event.  In particular, it won't cause the transition to
 * a sleep state to be aborted.
 *
 * This difficulty may be overcome if user space uses 'wakeup_count' before
 * writing to 'state'.  It first should read from 'wakeup_count' and store
 * the read value.  Then, after carrying out its own preparations for the system
 * transition to a sleep state, it should write the stored value to
 * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
 * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
 * is allowed to write to 'state', but the transition will be aborted if there
 * are any wakeup events detected after 'wakeup_count' was written to.
 */

static ssize_t wakeup_count_show(struct kobject *kobj,
				struct kobj_attribute *attr,
				char *buf)
{
	unsigned int val;

	return pm_get_wakeup_count(&val, true) ?
		sprintf(buf, "%u\n", val) : -EINTR;
}

static ssize_t wakeup_count_store(struct kobject *kobj,
				struct kobj_attribute *attr,
				const char *buf, size_t n)
{
	unsigned int val;
	int error;

	error = pm_autosleep_lock();
	if (error)
		return error;

	if (pm_autosleep_state() > PM_SUSPEND_ON) {
		error = -EBUSY;
		goto out;
	}

	error = -EINVAL;
	if (sscanf(buf, "%u", &val) == 1) {
		if (pm_save_wakeup_count(val))
			error = n;
		else
			pm_print_active_wakeup_sources();
	}

 out:
	pm_autosleep_unlock();
	return error;
}

power_attr(wakeup_count);

实现很简单:read时,直接调用pm_get_wakeup_count(注意第2个参数);write时,直接调用pm_save_wakeup_count(注意用户空间的wakeup count功能和auto sleep互斥,会在下篇文章解释原因)。这两个接口均是wakeup events framework提供的接口,跟着代码往下看吧。

4.3 pm_get_wakeup_count

pm_get_wakeup_count的实现如下:

/**
 * pm_get_wakeup_count - Read the number of registered wakeup events.
 * @count: Address to store the value at.
 * @block: Whether or not to block.
 *
 * Store the number of registered wakeup events at the address in @count. If
 * @block is set, block until the current number of wakeup events being
 * processed is zero.
 *
 * Return 'false' if the current number of wakeup events being processed is
 * nonzero. Otherwise, return 'true'.
 */
bool pm_get_wakeup_count(unsigned int *count, bool block)
{
    unsigned int cnt, inpr;  // 声明两个无符号整数变量

    if (block) {
        DEFINE_WAIT(wait);  // 定义一个等待队列项

        for (;;) {  // 进入无限循环
            prepare_to_wait(&wakeup_count_wait_queue, &wait, TASK_INTERRUPTIBLE);  // 将当前任务添加到等待队列中,状态设置为可中断等待
            split_counters(&cnt, &inpr);  // 获取唤醒事件计数器的值和正在处理的唤醒事件数量
            if (inpr == 0 || signal_pending(current))  // 如果正在处理的唤醒事件数量为零或当前任务收到了信号
                break;  // 跳出循环
            pm_print_active_wakeup_sources();  // 打印活动的唤醒源
            schedule();  // 调度任务,让出处理器并进入等待状态
        }
        finish_wait(&wakeup_count_wait_queue, &wait);  // 结束等待状态
    }

    split_counters(&cnt, &inpr);  // 获取最终的唤醒事件计数器的值和正在处理的唤醒事件数量
    *count = cnt;  // 将唤醒事件计数器的值存储到提供的地址count中
    return !inpr;  // 返回正在处理的唤醒事件数量是否为零的布尔值
}

该接口有两个参数,一个是保存返回的count值得指针,另一个指示是否block,具体请参考代码逻辑:

a)如果block为false,直接读取registered wakeup events和wakeup events in progress两个counter值,将registered wakeup events交给第一个参数,并返回wakeup events in progress的状态(若返回false,说明当前有wakeup events正在处理,不适合suspend)。

b)如果block为true,定义一个等待队列,等待wakeup events in progress为0,再返回counter。

 

注1:由4.2小节可知,sysfs发起的read动作,block为true,所以如果有正在处理的wakeup events,read进程会阻塞。其它模块(如auto sleep)发起的read,则可能不需要阻塞。

4.4 pm_save_wakeup_count

pm_save_wakeup_count的实现如下:

/**
 * pm_save_wakeup_count - Save the current number of registered wakeup events.
 * @count: Value to compare with the current number of registered wakeup events.
 *
 * If @count is equal to the current number of registered wakeup events and the
 * current number of wakeup events being processed is zero, store @count as the
 * old number of registered wakeup events for pm_check_wakeup_events(), enable
 * wakeup events detection, and return 'true'. Otherwise, disable wakeup events
 * detection and return 'false'.
 */
bool pm_save_wakeup_count(unsigned int count)
{
    unsigned int cnt, inpr;  // 声明两个无符号整数变量
    unsigned long flags;  // 声明一个无符号长整型变量

    events_check_enabled = false;  // 禁用唤醒事件检测

    raw_spin_lock_irqsave(&events_lock, flags);  // 获取并保存自旋锁的状态

    split_counters(&cnt, &inpr);  // 获取唤醒事件计数器的值和正在处理的唤醒事件数量

    if (cnt == count && inpr == 0) {  // 如果唤醒事件计数器的值等于count且正在处理的唤醒事件数量为零
        saved_count = count;  // 将count存储为旧的注册唤醒事件数,用于pm_check_wakeup_events()
        events_check_enabled = true;  // 启用唤醒事件检测
    }

    raw_spin_unlock_irqrestore(&events_lock, flags);  // 释放自旋锁并恢复中断状态

    return events_check_enabled;  // 返回唤醒事件检测是否启用的布尔值
}

1)注意这个变量,events_check_enabled,如果它不为真,pm_wakeup_pending接口直接返回false,意味着如果不利用wakeup count功能,suspend过程中不会做任何wakeup events检查,也就不会进行任何的同步。

2)解除当前的registered wakeup events、wakeup events in progress,保存在变量cnt和inpr中。

3)如果写入的值和cnt不同(说明读、写的过程中产生events),或者inpr不为零(说明有events正在被处理),返回false(说明此时不宜suspend)。

4)否则,events_check_enabled置位(后续的pm_wakeup_pending才会干活),返回true(可以suspend),并将当前的wakeup count保存在saved count变量中。

4.5 /sys/power/state

再回忆一下“Linux电源管理(6)_Generic PM之Suspend功能”中suspend的流程,在suspend_enter接口中,suspend前的最后一刻,会调用pm_wakeup_pending接口,代码如下:

   1: static int suspend_enter(suspend_state_t state, bool *wakeup)
   2: {
   3:     ...
   4:     error = syscore_suspend();
   5:     if (!error) {
   6:         *wakeup = pm_wakeup_pending();
   7:         if (!(suspend_test(TEST_CORE) || *wakeup)) {
   8:                 error = suspend_ops->enter(state);
   9:                 events_check_enabled = false;
  10:         }
  11:         syscore_resume();
  12:     }
  13:     ...
  14: }

在write wakeup_count到调用pm_wakeup_pending这一段时间内,wakeup events framework会照常产生wakeup events,因此如果pending返回true,则不能“enter”,终止suspend吧!

注2:wakeup后,会清除events_check_enabled标记。

“Linux电源管理(7)_Wakeup events framework”中已经介绍过pm_wakeup_pending了,让我们再看一遍吧:

/**
 * pm_wakeup_pending - Check if power transition in progress should be aborted.
 *
 * Compare the current number of registered wakeup events with its preserved
 * value from the past and return true if new wakeup events have been registered
 * since the old value was stored. Also return true if the current number of
 * wakeup events being processed is different from zero.
 */
bool pm_wakeup_pending(void)
{
    unsigned long flags;  // 声明一个无符号长整型变量
    bool ret = false;  // 声明一个布尔型变量,并初始化为false
    char suspend_abort[MAX_SUSPEND_ABORT_LEN];  // 声明一个字符数组

    raw_spin_lock_irqsave(&events_lock, flags);  // 获取并保存自旋锁的状态

    if (events_check_enabled) {  // 如果唤醒事件检测已启用
        unsigned int cnt, inpr;

        split_counters(&cnt, &inpr);  // 获取唤醒事件计数器的值和正在处理的唤醒事件数量
        ret = (cnt != saved_count || inpr > 0);  // 比较唤醒事件计数器的值与保存的旧值,或判断正在处理的唤醒事件数量是否大于零
        events_check_enabled = !ret;  // 更新唤醒事件检测的状态
    }

    raw_spin_unlock_irqrestore(&events_lock, flags);  // 释放自旋锁并恢复中断状态

    if (ret) {  // 如果有唤醒事件待处理
        pm_pr_dbg("Wakeup pending, aborting suspend\n");  // 打印调试信息
        pm_print_active_wakeup_sources();  // 打印活动的唤醒源
        pm_get_active_wakeup_sources(suspend_abort, MAX_SUSPEND_ABORT_LEN);  // 获取活动的唤醒源信息
        log_suspend_abort_reason(suspend_abort);  // 记录挂起中止的原因
        pr_info("PM: %s\n", suspend_abort);  // 打印挂起中止的原因
    }

    return ret || atomic_read(&pm_abort_suspend) > 0;  // 返回唤醒事件是否待处理或挂起中止的标志
}
EXPORT_SYMBOL_GPL(pm_wakeup_pending);

a)首先会判断events_check_enabled是否有效,无效直接返回false。有效的话:

b)获得cnt和inpr,如果cnt不等于saved_count(说明这段时间内有events产生),或者inpr不为0(说明有events正在被处理),返回true(告诉调用者,放弃吧,时机不到)。同时清除events_check_enabled的状态。

c)否则,返回false(放心睡吧),同时保持events_check_enabled的置位状态(以免pm_wakeup_pending再次调用)。

参考文献:http://www.wowotech.net/pm_subsystem/wakeup_count.html/comment-page-2#comments

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值