归一化和标准化
归一化(Nomalization)
归一化是将样本的特征值转换到同一量纲下把数据映射到[0,1]或者[-1, 1]区间内,仅由变量的极值决定。
包括:区间放缩法
标准化( Standarization)
通过求z-score的方法,转换为标准正态分布,和整体样本分布相关,每个样本点都能对标准化产生影响。
比较
它们的相同点在于都能取消由于量纲不同引起的误差;都是一种线性变换,都是对向量X按照比例压缩再进行平移。线性变换有很多良好的性质,这些性质决定了对数据改变后不会造成“失效”,反而能提高数据的表现,这些性质是归一化/标准化的前提。比如有一个很重要的性质:线性变换不会改变原始数据的数值排序。
(1)某些模型求解需要
1)在使用梯度下降的方法求解最优化问题时, 归一化/标准化后可以加快梯度下降的求解速度,即提升模型的收敛速度。如左图所示,未归一化/标准化时形成的等高线偏椭圆,迭代时很有可能走“之”字型路线(垂直长轴),从而导致迭代很多次才能收敛。而如右图对两个特征进行了归一化,对应的等高线就会变圆,在梯度下降进行求解时能较快的收敛。
(2)一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。
(3) 无量纲化
例如房子数量和