牛客网暑期ACM多校训练营(第五场)E room (费用流)

本文深入探讨了最小成本最大流算法在解决学生宿舍分配问题中的应用,通过构建图模型,将学生宿舍调整问题转化为最小费用流问题,详细介绍了算法实现过程及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://www.nowcoder.com/acm/contest/143/E
来源:牛客网
 

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

Nowcoder University has 4n students and n dormitories ( Four students per dormitory). Students numbered from 1 to 4n.

And in the first year, the i-th dormitory 's students are (x1[i],x2[i],x3[i],x4[i]), now in the second year, Students need to decide who to live with.

In the second year, you get n tables such as (y1,y2,y3,y4) denote these four students want to live together.

Now you need to decide which dormitory everyone lives in to minimize the number of students who change dormitory.

输入描述:

The first line has one integer n.

Then there are n lines, each line has four integers (x1,x2,x3,x4) denote these four students live together in the first year

Then there are n lines, each line has four integers (y1,y2,y3,y4) denote these four students want to live together in the second year

输出描述:

Output the least number of students need to change dormitory.

 

示例1

输入

复制

2
1 2 3 4
5 6 7 8
4 6 7 8
1 2 3 5

输出

复制

2

说明

Just swap 4 and 5

备注:

1<=n<=100

1<=x1,x2,x3,x4,y1,y2,y3,y4<=4n

It's guaranteed that no student will live in more than one dormitories.

题目大意:给出了n个宿舍,每个宿舍有4个人,前n行给出的是第一年的住宿情况,

后n行给出的是第二年4个人想住在一起的情况,问最少需要多少人移动。

解题思路:建图,由于当前寝室的成员如果搬出去之后我们不管他们进入哪一个寝室,都会对答案做出贡献,

因此我们把宿舍看成一个整体,让宿舍之间连边,容量为1.花费为两个宿舍成员不同的个数。

这样的话,如果去跑费用流那么答案就是最大流为n时的最小费用。

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<set>
#include<cmath>
#include<map>
#include<algorithm>
#include<cstring>
using namespace std;
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define sca(x) scanf("%d",&x)
#define pb(x) push_back(x)
#define per(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x3f3f3f3f
#define LL long long
#define N 300
#define MAXN 40005
#define inf 0x3f3f3f3f

int S,T;
int a[105][5],b[105][5];

struct edg
{
    int to,w,c,nt;
}g[MAXN];

int tot;
int head[N];
void addedg(int u,int v,int w,int c)
{
    g[tot].to=v;
    g[tot].w=w;
    g[tot].c=c;
    g[tot].nt=head[u];
    head[u]=tot++;

    g[tot].to=u;
    g[tot].w=0;
    g[tot].c=-c;
    g[tot].nt=head[v];
    head[v]=tot++;

}

int C(int x,int y)
{
    int ans=0;
    rep(i,1,4)
    {
        rep(j,1,4)
        {
            if(a[x][i]==b[y][j])
            {
                ans++;
                break;
            }
        }
    }
    return ans;
}

struct node
{
    int id,v;
}pre[N];

int vis[N],dist[N];
bool spfa(int s,int t)
{
    memset(vis,false,sizeof(vis));
    memset(dist,inf,sizeof(dist));
    queue<int>q;
    q.push(s);
    dist[s]=0;
    vis[s]=true;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=false;
        for(int i=head[u];i!=-1;i=g[i].nt)
        {
            int to=g[i].to;
            if(dist[to]>dist[u]+g[i].c&&g[i].w>0)
            {
                dist[to]=dist[u]+g[i].c;
                pre[to].v=u;
                pre[to].id=i;
                if(!vis[to])
                {
                    vis[to]=true;
                    q.push(to);
                }
            }
        }
    }
    return dist[t]!=inf;
}

void solve(int s,int t)
{
    int ans=0;
    int mini;
    while(spfa(s,t))
    {
        mini=inf;
        for(int i=t;i!=s;i=pre[i].v)
        {
            mini=min(mini,g[pre[i].id].w);
        }
        for(int i=t;i!=s;i=pre[i].v)
        {
            g[pre[i].id].w-=mini;
            g[pre[i].id^1].w+=mini;
        }
        ans+=dist[t]*mini;
    }
    printf("%d\n",ans);
}

int main()
{
    int n;
    sca(n);
    S=0,T=n*2+1;
    memset(head,-1,sizeof(head));
    rep(i,1,n)
    {
        scanf("%d%d%d%d",&a[i][1],&a[i][2],&a[i][3],&a[i][4]);
        addedg(S,i,1,0);
    }
    rep(i,1,n)
    {
        scanf("%d%d%d%d",&b[i][1],&b[i][2],&b[i][3],&b[i][4]);
        addedg(n+i,T,1,0);
    }
    rep(i,1,n)
    {
        rep(j,1,n)
        {
            addedg(i,j+n,1,4-C(i,j));
        }
    }
    solve(S,T);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值