期望mean
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
方差var
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
标准差std
方差的算术平方根,因为方差与我们观测的刚量不同,所以才会有标准差。都是反映离散程度。标准差更适合人理解。
比如说一个班级里有60个学生,平均成绩是70分,标准差是9,方差是81,成绩服从正态分布,那么我们通过方差不能直观的确定班级学生与均值到底偏离了多少分,通过标准差我们就很直观的得到学生成绩分布在[61,79]范围的概率为0.6826,即约等于下图中的34.2%*2
均方误差MSE
反映估计量与被估计量之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为
估计量t的均方误差。它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。
协方差
在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
变量分布
正太分布(高斯分布)钟形曲线
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
https://www.bilibili.com/video/av5973307?from=search&seid=1717094685812182572
标准正太分布有68-95-99.7法则
离散随机变量分布
伯努利分布
Bernoulli分布公式,的均值为P,方差为P(1-P)
贝叶斯公式
独立同分布
在概率统计理论中,指随机过程中,任何时刻的取值都为随机变量,如果这些随机变量服从同一分布,并且互相独立,那么这些随机变量是独立同分布。独立同分布最早应用于统计学,随着科学的发展,独立同分布已经应用数据挖掘,信号处理等不同的领域。
二次型
二次型(quadratic form):n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。二次型理论与域的特征有关。 [1]
P(A,B)与P(A|B)
https://www.zhihu.com/question/269044463/answer/489141551
https://blog.youkuaiyun.com/sjpljr/article/details/70169027