Flink算子实操(图文)

一、Flink算子实操(图文)

https://zhangboyi.blog.youkuaiyun.com/article/details/114288304

二、flink处理数据倾斜

1. keyBy
keyBy有两个主要的应用,数据分发(处理数据倾斜、平衡数据),上下游算子异步处理

1.1 数据分发
这个算子作为一个数据分发策略【分发还有还有的策略,例如:reblance(轮询),partitionCustom(自定义)】,

keyBy是根据key的hashcode对分区数取模,根据某个字段作为key进行分组,key相同的会被分到一起,如下图示例,相同颜色的正方形分配到一起。

当DataStream的并行分区中数据发生倾斜时,我们会想要在这些分区中,重新平衡这些数据。这时我们可以通过一种方式来实现,使所有task会收到相同的数据。可以使用的分区策略有:

  • keyBy,根据key的hashCode对分区数取模(hashCode%partitionNum,产生的是keyedStream)
  • shuffle分区策略(random,产生的还是dataStream)
  • rebalance分区策略(Round-Robin<询调度>,产生的还是dataStream)
  • resclae,和rebalance类似,只是做了更细粒度的划分

1.2 异步处理
在DataStream中,经过keyBy后悔编程KeyedStream,这时会将被KeyBy分割的上下游算子 异步计算。具体示例请参考这篇文章

<think>好的,我现在需要回答用户关于Flink算子使用说明和示例的问题。首先,我得回顾一下用户提供的引用内容,确保准确引用相关信息。用户提供了三个引用,分别是关于Flink的数据源算子、聚合算子和Transform算子的示例,特别是map作。 首先,我应该按照用户的要求,结构清晰地分步骤说明。根据系统级指令,需要包括数据源算子、转换算子和数据汇算子,每个部分都要有代码示例,并且正确使用LaTeX格式。比如在解释转换算子时,提到的map、filter、keyBy、reduce等,要给出相应的Java或Scala代码示例。 然后,要确保每个引用的内容被正确引用到。例如,在数据源算子部分,引用[1]和[3]提到了构建环境和fromCollection的使用,应该在相关段落末尾添加[^1]和[^3]。聚合算子部分引用[2]中的内容,需要标注[^2]。 接下来,生成相关问题。问题需要围绕Flink算子的更多细节、最佳践和应用场景展开,比如数据源算子的类型、转换算子的优化方法等。确保问题与用户提供的引用内容相关,并且能够引导进一步学习。 同时,检查LaTeX语法是否正确,比如行内公式用$...$,独立公式用$$...$$。不过在这个回答中可能数学公式不多,但如果有的话需要注意格式。例如,在解释窗口作时,如果有时间窗口的表达式,需要用正确的格式。 另外,确保使用中文回答,避免任何Markdown格式,除了代码块需要用三个反引号包裹。代码示例需要根据引用中的内容提供,比如引用[3]中的Scala代码,可以展示map作,而引用[2]中的聚合算子可以用Java示例。 最后,检查整体结构是否清晰,分为数据源、转换、数据汇三个部分,每个部分都有说明和示例,并且相关问题符合要求。同时,确保所有引用标识正确对应,如引用[1]、[2]、[3]分别在适当的位置标注。</think>### Flink算子使用说明及示例 Flink算子分为**数据源(Source)**、**转换(Transformation)**和**数据汇(Sink)**三类。以下结合示例说明其使用方法: --- #### 一、数据源算子(Source Operators) 数据源算子用于从外部系统(如文件、消息队列、集合等)读取数据。 **示例**:从集合构建数据源(Scala): ```scala val env = ExecutionEnvironment.getExecutionEnvironment val textDataSet: DataSet[String] = env.fromCollection( List("张三,1", "李四,2", "王五,3", "张三,4") ) // 从内存集合生成数据集[^3] ``` 其他常用数据源包括`readTextFile`(文件读取)、`fromElements`(元素集合)等。 --- #### 二、转换算子(Transformation Operators) 转换算子对数据进行处理,核心作包括: 1. **`map`**:逐条处理数据 ```scala // 将字符串转换为元组(姓名,数值) val tupleData = textDataSet.map { str => val parts = str.split(",") (parts(0), parts(1).toInt) } // 输出如("张三",1) ``` 2. **`filter`**:过滤数据 ```java DataStream<String> filtered = dataStream.filter(value -> value.startsWith("A")); ``` 3. **`keyBy`**:按Key分组 ```java DataStream<Tuple2<String, Integer>> keyedStream = dataStream .keyBy(value -> value.f0); // 按元组第一个字段分组 ``` 4. **`reduce`**:聚合作 ```java DataStream<Tuple2<String, Integer>> reduced = keyedStream .reduce((v1, v2) -> new Tuple2<>(v1.f0, v1.f1 + v2.f1)); // 对数值求和[^2] ``` 5. **`window`**:窗口计算 ```java dataStream.keyBy(value -> value.id) .window(TumblingEventTimeWindows.of(Time.seconds(10))) // 定义10秒滚动窗口 .sum("count"); // 按窗口统计总和 ``` --- #### 三、数据汇算子(Sink Operators) 数据汇负责将结果输出到外部系统,如文件、数据库或控制台。 **示例**:输出到文件(Java): ```java DataStream<String> result = ...; result.writeAsText("output/path"); // 写入文本文件 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值