代码参考自优达学城udacity中的基础线性代数udacity-linear-algebra
# python3.6
from math import sqrt, acos, pi
from decimal import Decimal, getcontext
getcontext().prec = 30
class Vector(object):
"""
实现了向量判断相等、相加、相减、与数的乘积、大小、方向、点乘、
夹角大小、是否垂直、是否平行、是否是零向量、
水平投影、垂直投影、向量积
"""
CANNOT_NORMALIZE_ZERO_VECTOR_MSG = "Cannot normalize the zero vector"
NO_UNIQUE_PARALLEL_COMPONENT_MSG = "NO_UNIQUE_PARALLEL_COMPONENT_MSG"
ONLY_DEFINED_IN_TWO_THREE_DIMS_MSG = "ONLY_DEFINED_IN_TWO_THREE_DIMS_MSG"
def __init__(self, coordinates):
try:
if not coordinates:
raise ValueError
self.coordinates = tuple([Decimal(x) for x in coordinates])
self.dimension = len(self.coordinates)
except ValueError:
raise ValueError('The coordinates must be nonempty')
except TypeError:
raise TypeError('The coordinates must be an iterable')
def __str__(self):
return 'Vector: {}'.format(self.coordinates)
def __eq__(self, v):
return self.coordinates == v.coordinates
def plus(self, v):
new_coordinates = [x + y for x, y in zip(self.coordinates, v.coordinates)]
return Vector(new_coordinates)
def minus(self, v):
new_coordinates = [x - y for x, y in zip(self.coordinates, v.coordinates)]
return Vector(new_coordinates)
def times_scalar(self, c):
new_coordinates = [Decimal(c) * x for x in self.coordinates]
return Vector(new_coordinates)
def magnitude(self):
coordinates_squared = [x ** 2 for x in self.coordinates]
return Decimal(sqrt(sum(coordinates_squared)))
def normalize(self):
try:
magnitude = self.magnitude()
return self.times_scalar(Decimal('1.0') / magnitude)
except ZeroDivisionError:
raise Exception(self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG)
def dot(self, v):
return sum([x * y for x, y in zip(self.coordinates, v.coordinates)])
def angle_with(self, v, in_degrees=False):
try:
u1 = self.normalize()
u2 = v.normalize()
d = u1.dot(u2)
angle_in_radians = acos(round(d, 2))
if in_degrees:
degrees_per_radian = 180. / pi
return angle_in_radians * degrees_per_radian
else:
return angle_in_radians
except Exception as e:
if str(e) == self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG:
raise Exception("Cannot compute an angle with the zero")
else:
raise e
def is_orthogonal_to(self, v, tolerance=1e-10):
return abs(self.dot(v)) < tolerance
def is_parallel_to(self, v):
return (self.is_zero() or
v.is_zero() or
self.angle_with(v) == 0 or
self.angle_with(v) == pi)
def is_zero(self, tolerance=1e-10):
return self.magnitude() < tolerance
def component_parallel_to(self, basis):
"""
向量在basis向量下的水平(平行)投影
:param basis:
:return:
"""
try:
u = basis.normalize()
weight = self.dot(u)
return u.times_scalar(weight)
except Exception as e:
if str(e) == self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG:
raise Exception(self.NO_UNIQUE_PARALLEL_COMPONENT_MSG)
else:
raise e
def component_orthogonal_to(self, basis):
"""
向量在basis向量下的垂直投影
:param basis:
:return:
"""
try:
projection = self.component_parallel_to(basis)
return self.minus(projection)
except Exception as e:
if str(e) == self.NO_UNIQUE_PARALLEL_COMPONENT_MSG:
raise Exception(self.NO_UNIQUE_PARALLEL_COMPONENT_MSG)
else:
raise e
def cross(self, v):
try:
x_1, y_1, z_1 = self.coordinates
x_2, y_2, z_2 = v.coordinates
new_coordinates = [y_1 * z_2 - y_2 * z_1,
-(x_1 * z_2 - x_2 * z_1),
x_1 * y_2 - x_2 * y_1
]
return Vector(new_coordinates)
except ValueError as e:
msg = str(e)
if msg == "need more than 2 values to unpack":
self_embedded_in_R3 = Vector(self.coordinates + ('0',))
v_embedded_in_R3 = Vector(v.coordinates + ('0',))
return self_embedded_in_R3.cross(v_embedded_in_R3)
elif (msg == "too many values to unpack " or msg == "need more than 1 value to unpack"):
raise Exception(self.ONLY_DEFINED_IN_TWO_THREE_DIMS_MSG)
else:
raise e
def area_of_parallelogram_with(self, v):
return self.cross(v).magnitude()
def area_of_triangle_with(self, v):
return self.area_of_parallelogram_with(v) / Decimal('2.0')