OTSU算法(大津法—最大类间方差法)原理及实现

大津法(OTSU)是一种确定图像二值化分割阈值的算法,通过最大化类间方差来提高图像分割效果。该算法计算简单,不受亮度和对比度影响,适用于大部分图像全局阈值分割场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出。从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大。

它被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。

应用:是求图像全局阈值的最佳方法,应用不言而喻,适用于大部分需要求图像全局阈值的场合。

优点:计算简单快速,不受图像亮度和对比度的影响。

缺点:对图像噪声敏感;只能针对单一目标分割;当目标和背景大小比例悬殊、类间方差函数可能呈现双峰或者多峰,这个时候效果不好。

Opencv 接口:

double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type)

Opencv 官方文档:https://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#threshold

Github: https://github.com/2209520576/Image-Processing-Algorithm 。欢迎Star、Fork。
 

原理

原理非常简单,涉及的知识点就是均值、方差等概念和一些公式推导。为了便于理解,我们从目的入手,反推一下这著名的OTSU算法。

求类间方差:

OTSU算法的假设是存在阈值TH将图像所有像素分为两类C1(小于TH)和C2(大于TH),则这两类像素各自的均值就为m1、m2,图像全局均值为mG。同时像素被分为C1和C2类的概率分别为p1、p2。因此就有:

                                                             p1*m1+p2*m2=mG                                           (1)

                                                                   p1+p2=1                                                      (2)

根据方差的概念,类间方差表达式为:

                                                        \sigma ^{2}=p1(m1-mG)^{2}+p2(m2-mG)^{2}             (3)

我们把上式化简,将式(1)代入式(3),可得:

                                                          \sigma ^{2}=p1p2(m1-m2)^{2}                                       (4)

其实求能使得上式最大化的灰度级 k 就是OTSU阈值了,很多博客也是这样做的。

其中:

                                                            p1=\sum_{i=0}^{k}p_{i}                                                       (5)     

                                                             m1=1/p1 *\sum_{i=0}^{k}ip_{i}                                        (6)

                                                             m2=1/p2 *\sum_{i=k+1}^{L-1}ip_{i}                                      (7)

照着公式,遍历0~255个灰度级,求出使式(4)最大的 k 就ok了。

-------------------------------------------------------------------------分割线-------------------------------------------------------------------------------------

但是根据原文(为了尊重原文),式(4)还可以进一步变形。

          首先灰度级K的累加均值m图像全局均值mG分别为:

                                                              m=\sum_{i=0}^{k}ip_{i}                                                   (8)

                                                              mG=\sum_{i=0}^{L-1}ip_{i}                                                (9)

                                                              

再瞅瞅式(6),m1、m2就可变为:

                                                           m1=1/p1 *m                                              (10)

                                                           m2=1/p2 *(mG-m)                                (11)

 式(10)、(11)代入式(4),我们可得原文最终的类间方差公式:

                                                        \sigma ^{2}=\frac{(mG*p1-m)^{_{2}}}{p1(1-p1)}                                      (12)

根据公式(5)、(8)、(9)求能使得上式(12)最大化的灰度级 k 就是OTSU阈值。

 

分割:

这个分割就是二值化,OpenCV给了以下几种方式,很简单,可以参考:

 

基于OpenCV实现

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>

int Otsu(cv::Mat& src, cv::Mat& dst, int thresh){
	const int Grayscale = 256;
	int graynum[Grayscale] = { 0 };
	int r = src.rows;
	int c = src.cols;
	for (int i = 0; i < r; ++i){
		const uchar* ptr = src.ptr<uchar>(i);
		for (int j = 0; j < c; ++j){        //直方图统计
			graynum[ptr[j]]++;
		}
	}

    double P[Grayscale] = { 0 };   
	double PK[Grayscale] = { 0 };
	double MK[Grayscale] = { 0 };
	double srcpixnum = r*c, sumtmpPK = 0, sumtmpMK = 0;
	for (int i = 0; i < Grayscale; ++i){
		P[i] = graynum[i] / srcpixnum;   //每个灰度级出现的概率
		PK[i] = sumtmpPK + P[i];         //概率累计和 
		sumtmpPK = PK[i];
		MK[i] = sumtmpMK + i*P[i];       //灰度级的累加均值                                                                                                                                                                                                                                                                                                                                                                                                        
		sumtmpMK = MK[i];
	}
	
	//计算类间方差
	double Var=0;
	for (int k = 0; k < Grayscale; ++k){
		if ((MK[Grayscale-1] * PK[k] - MK[k])*(MK[Grayscale-1] * PK[k] - MK[k]) / (PK[k] * (1 - PK[k])) > Var){
			Var = (MK[Grayscale-1] * PK[k] - MK[k])*(MK[Grayscale-1] * PK[k] - MK[k]) / (PK[k] * (1 - PK[k]));
			thresh = k;
		}
	}

	//阈值处理
	src.copyTo(dst);
	for (int i = 0; i < r; ++i){
	    uchar* ptr = dst.ptr<uchar>(i);
		for (int j = 0; j < c; ++j){
			if (ptr[j]> thresh)
				ptr[j] = 255;
			else
				ptr[j] = 0;
		}
	}
	return thresh;
}


int main(){
	cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\Fig1039(a)(polymersomes).tif");
	if (src.empty()){
		return -1;
	}
	if (src.channels() > 1)
		cv::cvtColor(src, src, CV_RGB2GRAY);

	cv::Mat dst,dst2;
	int thresh=0;
	double t2 = (double)cv::getTickCount();
	thresh=Otsu(src , dst, thresh); //Otsu
	std::cout << "Mythresh=" << thresh << std::endl;
	t2 = (double)cv::getTickCount() - t2;
	double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "my_process=" << time2 << " ms. " << std::endl << std::endl;
    double  Otsu = 0;

	Otsu=cv::threshold(src, dst2, Otsu, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
	std::cout << "OpenCVthresh=" << Otsu << std::endl;

	cv::namedWindow("src", CV_WINDOW_NORMAL);
	cv::imshow("src", src);
	cv::namedWindow("dst", CV_WINDOW_NORMAL);
	cv::imshow("dst", dst);
	cv::namedWindow("dst2", CV_WINDOW_NORMAL);
	cv::imshow("dst2", dst2);
	//cv::imwrite("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Image Filtering\\MeanFilter\\TXT.jpg",dst);
	cv::waitKey(0);
}

效果

先看看分割效果(和OpenCV自带构造函数对比):效果一样

                             本文实现                                                      原图                                           opencv自带构造函数

                 

 

再看看阈值求取的准确性和效率吧(和OpenCV自带构造函数对比):图像分辨率为702 * 648

                                                                           

求出来的阈值和opencv一样,时间为1ms左右,速度还行。

 

参考:

https://www.cnblogs.com/ranjiewen/p/6385564.html

http://www.dididongdong.com/archives/4614

### 回答1: PSPICE 17.2 是一种用于电子电路仿真和分析的软件工具。下面是一份简单的 PSpice 17.2 使用初级教程: 1. 安装和启动:首先,你需要下载并安装 PSpice 17.2 软件。安装完成后,双击图标启动软件。 2. 创建电路:在软件界面上,选择“文件”>“新建”,然后在电路编辑器中创建你的电路。你可以从元件库中选择组件,并将其拖放到画布上。连接元件的引脚以构建电路。 3. 设置元件参数:双击元件以打开元件参数设置对话框。在对话框中,设置元件的值、名称和其他参数。对于电阻、电容等基本元件,可以直接输入数值。 4. 设置仿真配置:选择“仿真”>“设置和校验”,然后在仿真设置对话框中选择仿真的型和参数。你可以选择直流分析、交流分析、暂态分析等。设置仿真参数后,点击“确定”。 5. 运行仿真:选择“仿真”>“运行”来启动仿真。在仿真过程中,软件将模拟电路的响应,并将结果输出到仿真波形窗口中。 6. 查看仿真结果:在仿真波形窗口中,你可以查看各个元件的电流、电压等参数随时变化的波形。你还可以对波形进行放大、缩小、平移等操作,以更详细地分析电路的性能。 7. 保存和导出结果:在仿真过程中,你可以选择将结果保存为文件或导出为其他格式,如图像文件或数据文件。 以上是 PSpice 17.2 使用初级教程的基本步骤。随着实践的深入,你可以进一步了解复杂电路的建模和分析方,并尝试更高级的功能和技术。 ### 回答2: PSPICE 17.2是一款电子电路仿真软件,用于对电路进行分析和验证。以下是PSPICE 17.2的使用初级教程: 1. 下载和安装:在官方网站上下载PSPICE 17.2并进行安装。 2. 组件库:打开PSPICE软件后,点击“Capture CIS”图标,进入组件库界面。选择适当的电子元件,如电阻、电容、二极管等,将它们拖放到画布上。 3. 电路连接:在画布上拖放所需元件后,使用导线工具连接它们。点击导线图标,选择合适的连接方式,并将其拖动到适当的端口上。 4. 参数设定:双击元件,弹出元件属性对话框。在这里设置元件的数值,例如电阻的阻值、电容的电容值等。 5. 电源设置:在画布上点击右键,选择“Power Sources”,然后选择适当的电源,如直流电源或交流电源。设置电源的电压或电流数值。 6. 仿真设置:点击画布上方的“PSpice”选项,选择“Edit Simulation Profile”打开仿真配置对话框。在仿真配置中,设置仿真参数,如仿真(直流、交流、脉冲等)、仿真时等。 7. 仿真运行:在仿真配置对话框中点击“Run”按钮,开始进行电路仿真运行。仿真完成后,可以查看并分析仿真结果,如电流、电压、功率等。 8. 结果分析:通过菜单栏中的“PSpice>Probe”选项,打开特定信号的仿真结果。通过选择信号节点,可以显示该信号的波形、幅值和频谱等信息。 9. 数据输出:仿真结束后,可以通过“PSpice>Results”菜单栏选项,导出仿真结果到文本文件,以供后续分析。 10. 误差调整:如果仿真结果与预期不符,可以检查电路连接、元件参数等以找出问题。根据需要进行调整,重新运行仿真以验证改进效果。 以上就是PSPICE 17.2使用初级教程的简要介绍。在使用过程中,请参考软件的帮助文件和官方文档,以获取更详细的指导和解决方。任何新的软件都需要不断的实践和尝试,希望这个教程能对你有所帮助。 ### 回答3: PSPICE 17.2是一款常用的电路仿真软件,用于电路设计和分析。下面是一个简要的PSPICE 17.2的初级教程: 1. 下载和安装:首先,从官方网站下载PSPICE 17.2,并按照安装向导进行安装。安装完成后,打开软件。 2. 创建新工程:在PSPICE 主界面上,点击“File”菜单,然后选择“New Project”来创建一个新的工程。给工程起一个适当的名字,并选择工程的存储位置。 3. 添加电路元件:在工程界面上,点击“Place”图标,然后选择不同的元件来构建你的电路。你可以从库中选择各种电子元件,如电阻、电容、电感等,并将它们拖放到工程界面上。 4. 连接元件:选择“Wire”图标,然后点击元件的引脚来连接它们。确保连接顺序正确,以保证电路的正确性。 5. 设置元件参数:对于每个添加的元件,你需要设置它们的参数。右键点击元件,选择“Edit Propertiess”,然后在弹出的窗口中输入适当的参数值。 6. 添加电源:在电路中添加电源,以提供电路所需的电能。选择“Place”图标,然后选择合适的电源元件并将其拖放到电路中。同样,设置电源的参数值。 7. 设置仿真配置:在工程界面上,点击“PSpice”菜单,然后选择“Edit Simulation Profile”来设置仿真配置参数。你可以选择仿真型、仿真时和仿真步长等。 8. 运行仿真:点击“PSpice”菜单,选择“Run”来运行仿真。PSPICE将自动运行仿真并显示结果。 9. 分析和优化:根据仿真结果,可以分析和优化电路的性能。你可以观察电流、电压和功率等参数,以评估电路的性能,并根据需要进行调整。 10. 保存和导出结果:在分析和优化完成后,可以保存你的工程并导出结果。点击“File”菜单,选择“Save Project”来保存工程,然后选择“Outut”菜单,选择“Export”来导出结果。 以上是PSPICE 17.2的初级教程的简要介绍。通过以上步骤,你可以开始使用PSPICE 17.2进行电路设计和仿真。在实践中不断探索和学习,你将成为一个熟练的PSPICE用户。
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值