用Python实现马尔可夫链蒙特卡罗

通过一个实际项目,深入浅出地讲解了马尔可夫链蒙特卡罗(MCMC)和贝叶斯推理的概念及Python实现过程。在实战中,将这些复杂的统计学概念转化为直观的理解,展示了如何从不完美的数据中提取有价值的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在过去的几个月里,我在数据科学领域里遇到一个术语:马尔可夫链蒙特卡罗(MCMC)。在博客或文章里,每次看到这个语,我都会摇摇头,有几次我试着学习MCMC和贝叶斯推理,但每次一开始,就很快放弃了。我学习新技术的方式都是把它应用到一个实际问题上。

通过使用一些数据和一本应用实战的书(Bayesian Methods for Hackers),我终于通过一个实际项目弄懂了MCMC。像往常一样,当把这些技术概念应用到实际问题中时,理解它们要比阅读书上的抽象概念更容易。本文通过介绍Python中的MCMC实现过程,最终教会了我使用这个强大的建模和分析工具。

本项目的完整代码和相关数据在GitHub上可以找到。本文重点讨论了应用程序和结果,涵盖了很多有深度的内容。

介绍

实际生活中的数据永远不是完美的,但我们仍然可以通过正确的模型从噪音数据中提取有价值的信息。

原文链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值