位运算
1. 原码、反码和补码
二进制有三种不同的表示形式:原码、反码和补码,计算机内部使用补码来表示。
原码:就是其二进制表示(注意,有一位符号位)。
00 00 00 11 -> 3
10 00 00 11 -> -3
反码:正数的反码就是原码,负数的反码是符号位不变,其余位取反(对应正数按位取反)。
00 00 00 11 -> 3
11 11 11 00 -> -3
补码:正数的补码就是原码,负数的补码是反码+1。
00 00 00 11 -> 3
11 11 11 01 -> -3
符号位:最高位为符号位,0表示正数,1表示负数。在位运算中符号位也参与运算。
2. 按位运算
按位异或操作 ^
1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
0 ^ 0 = 0
只有两个对应位不同时才为 1
00 00 01 01 -> 5
^
00 00 01 10 -> 6
---
00 00 00 11 -> 3
异或操作的性质:满足交换律和结合律
A: 00 00 11 00
B: 00 00 01 11
A^B: 00 00 10 11
B^A: 00 00 10 11
A^A: 00 00 00 00
A^0: 00 00 11 00
A^B^A: = A^A^B = B = 00 00 01 11
- 按位左移操作 <<
num << i
将num
的二进制表示向左移动i
位所得的值。
00 00 10 11 -> 11
11 << 3
---
01 01 10 00 -> 88
- 按位右移操作 >>
num >> i
将num
的二进制表示向右移动i
位所得的值。
00 00 10 11 -> 11
11 >> 2
---
00 00 00 10 -> 2
通过 <<
,>>
快速计算2的倍数问题。
n << 1 -> 计算 n*2
n >> 1 -> 计算 n/2,负奇数的运算不可用
n << m -> 计算 n*(2^m),即乘以 2 的 m 次方
n >> m -> 计算 n/(2^m),即除以 2 的 m 次方
1 << n -> 2^n
通过 ^
快速交换两个整数。
a ^= b
b ^= a
a ^= b
通过 a & (-a)
快速获取a
的最后为 1 位置的整数。
00 00 01 01 -> 5
&
11 11 10 11 -> -5 #-5的补码
---
00 00 00 01 -> 1
00 00 11 10 -> 14
&
11 11 00 10 -> -14 #-14的补码
---
00 00 00 10 -> 2