MapReduce优化参数

本文详细介绍了MapReduce的优化参数,包括资源相关参数如Map和Reduce Task的内存和CPU配置,以及YARN的调度器配置。还涵盖了容错相关参数,如任务的最大重试次数和失败容忍比例。此外,讨论了效率和稳定性参数,如推测执行机制和输入文件切片大小的调整。这些优化对于提升MapReduce作业的性能和稳定性至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 MapReduce优化参数

1. 资源相关参数

//以下参数是在用户自己的MapReduce应用程序中配置就可以生效

(1) mapreduce.map.memory.mb: 一个Map Task可使用的内存上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

(3) mapreduce.map.cpu.vcores: 每个Maptask可用的最多cpu core数目, 默认值: 1

(4) mapreduce.reduce.cpu.vcores: 每个Reducetask可用最多cpu core数目默认值: 1

(5) mapreduce.map.java.opts: Map Task的JVM参数,你可以在此配置默认的java heap 

size等参数, 例如:“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”

(@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值