闭包 python_请问开集和闭集如何理解?

本文从度量空间的角度解释开集和闭集的概念。首先介绍了全集、距离、球形邻域、内点的定义,然后定义了开集,指出全集是开集的例子。接着讨论了边界点和闭集,说明全集也是闭集。在拓扑空间的框架下,探讨了如何抛开度量定义开集,并总结了开集的性质。最后,介绍了拓扑空间、连续映射等相关概念,展示了数学中从具体到抽象的理论构建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习这些基本概念,一定是要从定义出发,开集闭集有两套语言,一套是度量空间的,一套是拓扑学的,两套语言内在的联系非常的深刻。比较接地气的定义是基于度量空间的,度量空间就是空间中的每一个元素与另一个元素先要有个距离。

先给出一个全集

equation?tex=X

距离

距离的定义:

equation?tex=%5Cbegin%7Barray%7D%7Bll%7D+%5Cforall+x%2Cy+%2Cz%5Cin+X%5C%5C++d%3AX%5Cotimes+X+%5Cto+R%5C%5C+%5Cquad+d%28x%2Cy%29%3Dd%28y%2Cx%29%5Cge+0%5C%5C+%5Cquad+d%28x%2Cx%29%3D0%5C%5C+%5Cquad+d%28x%2Cy%29%2Bd%28y%2Cz%29%5Cge+d%28x%2Cz%29+%5Cend%7Barray%7D

球形邻域

有了距离,就可以定义球形邻域,

equation?tex=%5Cepsilon 球形邻域:

equation?tex=B%28x%2C%5Cepsilon%29%3D%5C%7By%7C+y%5Cin+X%2Cd%28x%2Cy%29%5Clt+%5Cepsilon%5C%7D

内点

有了邻域就可以定义集合

equation?tex=A 内点x:

equation?tex=A%5Csubset+X%2Cx%5Cin+A%2C%5Cquad+%5Cexists+%5Cepsilon%3E0%2CB%28x%2C%5Cepsilon%29%5Csubset+A .

一个集合

equation?tex=A 的全部内点构成集合记为:

equation?tex=A%5E%7B%5Ccirc%7D%5Cequiv%5C%7Bx%7C+x%5Cin+A%2C%5Cexists+%5Cepsilon+%5Cgt0%2CB%28x%2C%5Cepsilon%29%5Csubset+A%5C%7D

开集

接下来,就可以定义开集了,开集

equation?tex=A 满足条件:任意的

equation?tex=x%5Cin+A ,

equation?tex=x 是A的内点,即

equation?tex=A%3DA%5E%7B%5Ccirc%7D

所以根据定义,全集一定是开集。因为全集的任何一个元素的球形邻域,都一定属于这个全集。因为全集之外没有元素。

边界点

要搞懂闭集,也要看定义,闭集需要引入一个定义,边界点。集合A的边界点

equation?tex=x 的定义:

equation?tex=x%5Cin+X%2C%5Cforall+%5Cepsilon%3E0%2CA%5Ccap+B%28x%2C%5Cepsilon%29%5Cneq+%5Cphi%2C%5Cbar+A%5Ccap+B%28x%2C%5Cepsilon%29%5Cneq+%5Cphi

边界的球形邻域,一定是同时包含集合A的元素和集合A的补集的元素。

边界

集合

equation?tex=A 的全部边界点组成的集合记为

equation?tex=%5Cpartial+A+%5Cequiv%5C%7Bx%7C+x%5Cin+X%2C%5Cexists+%5Cepsilon+%5Cgt0%2CB%28x%2C%5Cepsilon%29%5Ccap+A%5Cneq%5Cphi%2CB%28x%2C%5Cepsilon%29%5Ccap+%5Cbar+A%5Cneq%5Cphi%5C%7D

闭集

闭集的定义就是:

equation?tex=%5Cpartial+A+%5Csubset+A

全集一定是闭集,因为

equation?tex=%5Cpartial+X%3D%5Cphi%2C%5Cphi%5Csubset+X .

所以全集一定是即开又闭的。

简单但是不太准确的概括(形象直观),开集和闭集的差别就是在于边界,一个要求不包含它的任何边界,一个要求完整的包含边界。

全集和空集是特别特殊的情况,这两个集合都是既开又闭的。

接下来:整个平面如果把这个集合给它挖掉,挖掉以后,边界一块挖掉,那么这个集合是开集。

平面本身是没有边界的,不管挖掉是开集还是闭集,挖掉之后有挖掉边界点,也就是所剩余平面不包含边界点。只要证明剩余的平面的点全部都是内点即可。

设剩下集合为

equation?tex=A ,显然

equation?tex=%5Cpartial+A+%5Ccap+A%3D+%5Cphi .

任意取

equation?tex=A 的一个元素

equation?tex=x ,必然有

equation?tex=%5Cforall+%5Cepsilon%3E0%2CB%28x%2C%5Cepsilon%29%5Ccap+A+%5Cneq+%5Cphi ,这是显然的,因为x本身就满足条件。

现在问:

equation?tex=%5Cforall+%5Cepsilon%3E0%2CB%28x%2C%5Cepsilon%29%5Ccap+%5Cbar+A+%5Cneq+%5Cphi 成立吗?显然不成立,因为如果成立就有

equation?tex=x%5Cin+%5Cpartial+A%2Cx%5Cin+A%5CRightarrow++x%5Cin+%5Cpartial+A+%5Ccap+A%5Cneq%5Cphi+ 与条件矛盾。

那么就必然有某个

equation?tex=%5Cexists+%5Cepsilon%3E0%2CB%28x%2C%5Cepsilon%29%5Ccap+%5Cbar+A+%3D%5Cphi+%5CRightarrow+B%28x%2C%5Cepsilon%29%5Csubset++A ,这说明x是内点。

equation?tex=x

equation?tex=A 任意取的一个元素,这就说明A是开集。

一个集合,边界被挖掉,那就只剩内点了,必然是开集。

===========补充拓扑空间的开集与闭集=================

谈到拓扑空间,先来看看为什么要摆脱度量。

拓扑学是研究连续变形的数学,也称橡皮泥科学,“捏”橡皮泥就连续变形,也就是连续映射,有了度量就像有了骨架,就不能随便变形了。因此,一定要抛开度量去研究连续映射才是拓扑学。连续映射和开集又有着很紧密的关系。这个关系由一个定理给出:

定理 :度量空间的映射:

equation?tex=f%3A+U%5Cto+V 是连续映射的充要条件是:

equation?tex=%5Cforall+Y+%5Csubseteq+f%28U%29%5Csubseteq+V ,

equation?tex=Y+ 是开集,则

equation?tex=f%5E%7B-1%7D%28Y%29%5Csubseteq+U 也是开集。

要说明的是原像的定义:

equation?tex=f%5E%7B-1%7D%28Y%29%5Cequiv%5C%7Bx%7C%5Cforall+x%5Cin+X%2Cf%28x%29%5Cin+Y%5C%7D

通俗的说,连续映射的充要条件是,开集的原像也是开集。这个定理证明过程有点长,有兴趣的可以去翻《点集拓扑》的书。这个定理真正的绝妙之处在于形式上看连续映射和度量没有直接关系,只跟开集有关系,进一步去学习可以知道它只与开集的性质有关。因此只要在定义开集时抛开度量就可以建立拓扑学了。

那么能不能抛开度量定义开集呢?需要先看一下开集有什么性质,尤其是区别于闭集的性质。

开集的性质,设全集为

equation?tex=X ,全体X的开子集的集合记为

equation?tex=%5Cscr+Fequation?tex=%5Cphi+%5Cin+%5Cscr+F ,

equation?tex=X+%5Cin+%5Cscr+F

equation?tex=U_i%5Cin+%7B%5Cscr+F%7D%2Ci%5Cin+N%5E%2B%2Ci%5Cle+n+%5C%3B%2C%5Ccap+_%7Bi%3D1%7D%5EnU_i+%5Cin+%5Cscr+F ,开集的有限交为开集;

equation?tex=U_%7B%5CLambda%7D%5Cin+%7B%5Cscr+F%7D%2C%5CLambda+%5Cin+R+%5C%3B%2C%5Ccup+_%7B%5CLambda%5Cin+R%7DU_%7B%5CLambda%7D+%5Cin+%5Cscr+F ,开集的无限并还是开集;这三点不难证明,第一点已经说明:

第二点证明只需要任取交集的一点

equation?tex=x ,然后在每个集合

equation?tex=U_i+ 中找到一个开球

equation?tex=B%28x%2C%5Cepsilon_i%29 ,这样就有

equation?tex=n 个开球,取

equation?tex=%5Cepsilon+%3D%5Cmin_%7Bi%3D1...n%7D%5Cepsilon_i ,就找到一个开球

equation?tex=B%28x%2C%5Cepsilon%29%5Csubset+%5Ccap_%7Bi%3D1...n%7DU_i ,所以x是内点。由于

equation?tex=x 是任意取的,因此

equation?tex=%5Ccap+_%7Bi%3D1%7D%5EnU_i+%5Cin+%5Cscr+F 成立。

第三点,就更加直接了,任意点

equation?tex=x,总是属于某个开集

equation?tex=U_%7B%5CLambda%7D ,所以一定可以找到某个开球

equation?tex=B%28x%2C%5Cepsilon%29%5Csubset+U_%7B%5CLambda%7D%5Csubset%5Ccup+_%7B%5CLambda%5Cin+R%7DU_%7B%5CLambda%7D+%5Cin+%5Cscr+F ,所以开集的无限并一定还是开集。

对应闭集,恰好有三条相似的性质,闭集的性质:设全集为

equation?tex=X ,全体X的闭子集的集合记为

equation?tex=%5Cscr+Cequation?tex=%5Cphi+%5Cin+%5Cscr+C ,

equation?tex=X+%5Cin+%5Cscr+C

equation?tex=U_i%5Cin+%7B%5Cscr+C%7D%2Ci%5Cin+N%5E%2B%2Ci%5Cle+n+%5C%3B%2C%5Ccup+_%7Bi%3D1%7D%5EnU_i+%5Cin+%5Cscr+C ,闭集的有限并为闭集;

equation?tex=U_%7B%5CLambda%7D%5Cin+%7B%5Cscr+C%7D%2C%5CLambda+%5Cin+R+%5C%3B%2C%5Ccap+_%7B%5CLambda%5Cin+R%7DU_%7B%5CLambda%7D+%5Cin+%5Cscr+C ,闭集的无限交还是开集;这三条和开集极为相似,只是交并运算交换了一下。开集的证明就是证明所有的点都是内点,而闭集的证明就是找边界点。都只要证明经过运算后的集合的边界点一定是原来某个闭集的边界点即可。

彻底抛开度量,就只需要重新定义开集即可,通过度量空间得到开集的性质也没有明显的用到度量,因此只需要根据开集区别于闭集的性质来定义开集即可,拓扑空间的定义就是完完全全照抄上面开集的三条性质:

拓扑空间的定义:

先定义拓扑:非空集合的

equation?tex=X 的一个拓扑

equation?tex=%7B%5Cscr+F%7D

equation?tex=%7B%5Cscr+F%7D是若干

equation?tex=X 的子集组成的集合,满足:equation?tex=%5Cphi+%5Cin+%5Cscr+F ,

equation?tex=X+%5Cin+%5Cscr+F

equation?tex=U_i%5Cin+%7B%5Cscr+F%7D%2Ci%5Cin+N%5E%2B%2Ci%5Cle+n+%5C%3B%2C%5Ccap+_%7Bi%3D1%7D%5EnU_i+%5Cin+%5Cscr+F ,开集的有限交为开集;

equation?tex=U_%7B%5CLambda%7D%5Cin+%7B%5Cscr+F%7D%2C%5CLambda+%5Cin+R+%5C%3B%2C%5Ccup+_%7B%5CLambda%5Cin+R%7DU_%7B%5CLambda%7D+%5Cin+%5Cscr+F ,开集的无限并还是开集;

在定义拓扑空间:指定了拓扑

equation?tex=%7B%5Cscr+F%7D

equation?tex=X就是一个拓扑空间,一般记为

equation?tex=%28X%2C%5Cscr+F%29

再来看,定义拓扑和拓扑空间都没有用到度量。从拓扑空间开始反过来定义开集,闭集,导集等等概念。

开集:拓扑空间的一个子集

equation?tex=o%5Csubseteq+X 是一个开集,当且仅当

equation?tex=o%5Cin+%5Cscr+F ;

开邻域:

equation?tex=N%5Csubseteq+X+ 称为点

equation?tex=x%5Cin+X 的开领域,若

equation?tex=%5Cexists+o%5Cin+%5Cscr+F 使得

equation?tex=x%5Cin+o+%5Csubseteq+N ;

闭集:

equation?tex=C%5Csubseteq+X 是一个闭集,若

equation?tex=X-C+%5Cin+%5Cscr+F ;闭集比较容易验证,使用莫根律运算一下就好。全体闭集就是

equation?tex=%7B%5Cscr+C%7D%5Cequiv+%5C%7BU%7CX-U%5Cin+%7B%5Cscr+F%7D%2C%5Cforall+U%5Csubseteq+X%5C%7D

联通的拓扑空间,若拓扑空间

equation?tex=%28X%2C%5Cscr+F%29是联通的,若它除

equation?tex=%5Cphi%2CX 外没有即开又闭的子集。

闭包:

equation?tex=%5Cbar+A%3D%5Ccap_%7Ba%7D+U_%7Ba%7D%2C%5Cforall+U_a%5Cin+%7B%5Cscr+C%7D%2CA%5Csubseteq+U_a。所有包含A的闭集的交就是A的闭包。

内部:

equation?tex=+A%5E%5Ccirc%3D%5Ccup_%7Ba%7D+U_%7Ba%7D%2C%5Cforall+U_a%5Csubseteq+A%2CU_a%5Cin+%5Cscr+F ,

equation?tex=U_a 是开集。所有含于A的开集的并就是A的内部。

边界:

equation?tex=%5Cpartial+A%3D+%5Cbar+A-A%5E%5Ccirc ,闭包挖掉内部,就是边界。

有了拓扑空间,反过来又可以重新定义连续映射:

连续映射:两个拓扑空间

equation?tex=%28X%2C%7B%5Cscr+F%7D%29%2C%28Y%2C%5Cscr+G%29 ,映射

equation?tex=f%3AX%5Cto+Y 是连续映射,若

equation?tex=%5Cforall+V%5Cin+%7B%5Cscr+G%7D%5CRightarrow+f%5E%7B-1%7D%28V%29%5Cin+%7B%5Cscr+F%7D 。(若任何开集的原像是开集,映射就是连续映射)。

以上就是拓扑学定义开集闭集的过程,通过度量空间的开集的性质,形式化定义拓扑空间,然后通过拓扑空间定义开集、闭集、闭包、内部、边界、连续映射等一系列的概念来建立拓扑学的基础。以上就是拓扑学最为基本的内容,数学上很多分支的发展,就是通过对一个数学分支(这里是度量空间)中某些概念(开集)的运算性质进行形式化的定义(拓扑,拓扑空间),然后从这个定义出发反过来重建该数学分支的其他基本概念(开集,闭集、闭包、内部、边界、连通性等等),从而抛掉这个数学分支总某些限制性东西(度量);建立更加抽象更加一般的数学新的分支(拓扑学,度量空间由此变成拓扑空间的一个特例)。

事实上,这种办法在数学理论发展中非常常见,比如高斯绝妙定理的证明,在研究曲面的时候可以抛掉外部空间(古典曲面论都是研究嵌入三维欧几里得空间里面的曲面),进而研究曲面内蕴几何学,最后发展成了现代的微分几何学、纤维丛、规范场。

微分几何又通过形式化切向量(莱布尼兹微分法则和线性空间组合在一起)建立切空间,余切空间,等等。

总之,学习数学就是要搞清楚基本概念的定义,从定义出发是学习数学的必经之路。

由于数学在不断抽象的过程中,都采用形式化定义,因此数学可以说的非常彻底的形而上学,以至于很多人疑惑数学为什么能应用于实际。实际上在形而上的抽象过程中,数学就是不断的提炼和升华、去伪存真。那些开山立派的经典的数学定义豪无例外都抓住了事物最本质的特征,每一个字都是严格推敲过的,因而又是科学中最严密的科学。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值