廖雪峰python数据类型和变量_学习廖雪峰的Python教程之数据类型

本文介绍了Python中的基本数据类型,包括整数、浮点数、字符串、布尔值,以及它们在计算机内部的存储和运算特性。重点讲解了字符串的转义字符和多行字符串,以及动态语言Python与静态语言的区别。

数据类型

计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值。但是,计算机能处理的远不止数值,还可以处理文本、图形、音频、视频、网页等各种各样的数据,不同的数据,需要定义不同的数据类型。在Python中,能够直接处理的数据类型有以下几种:

整数

Python可以处理任意大小的整数,当然包括负整数,在程序中的表示方法和数学上的写法一模一样,例如:1,100,-8080,0,等等。

计算机由于使用二进制,所以,有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9,a-f表示,例如:0xff00,0xa5b4c3d2,等等。

浮点数

浮点数也就是小数,之所以称为浮点数,是因为按照科学记数法表示时,一个浮点数的小数点位置是可变的,比如,1.23x109和12.3x108是相等的。浮点数可以用数学写法,如1.23,3.14,-9.01,等等。但是对于很大或很小的浮点数,就必须用科学计数法表示,把10用e替代,1.23x109就是1.23e9,或者12.3e8,0.000012可以写成1.2e-5,等等。

整数和浮点数在计算机内部存储的方式是不同的,整数运算永远是精确的(除法难道也是精确的?是的!),而浮点数运算则可能会有四舍五入的误差。

字符串

字符串是以单引号' '或双引号" "括起来的任意文本,比如'abc',"xyz"等等。请注意,''或""本身只是一种表示方式,不是字符串的一部分,因此,字符串'abc'只有a,b,c这3个字符。如果'本身也是一个字符,那就可以用""括起来,比如"I'm OK"包含的字符是I,',m,空格,O,K这6个字符。

如果字符串内部既包含'又包含"怎么办?可以用转义字符\来标识,比如:

I'm "OK"! #表示的字符串内容是:I'm "OK"!

转义字符\可以转义很多字符,比如\n表示换行,\t表示制表符,字符\本身也要转义,所以\\表示的字符就是\,可以在Python的交互式命令行用print打印字符串看看:

>>> print 'I\'m ok.'I'm ok.

>>> print 'I\'m learning\nPython.'I'm learning

Python.>>> print '\\\n\\'\

\

如果字符串里面有很多字符都需要转义,就需要加很多\,为了简化,Python还允许用r''表示''内部的字符串默认不转义,可以自己试试:

>>> print '\\\t\\'\ \>>> print r'\\\t\\'\\\t\\

如果字符串内部有很多换行,用\n写在一行里不好阅读,为了简化,Python允许用'''...'''的格式表示多行内容,可以自己试试:

>>> print '''line1

... line2

... line3'''

line1

line2

line3

上面是在交互式命令行内输入,如果写成程序,就是:

print '''line1

line2

line3'''

多行字符串'''...'''还可以在前面加上r使用,请自行测试。

布尔值

布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值,要么是True,要么是False,在Python中,可以直接用True、False表示布尔值(请注意大小写),也可以通过布尔运算计算出来:

>>> True

True

>>> False

False

>>> 3 > 2

True

>>> 3 > 5

False

布尔值可以用and、or和not运算。

and运算是与运算,只有所有都为True,and运算结果才是True:

>>> True and True

True

>>> True and False

False

>>> False and False

False

or运算是或运算,只要其中有一个为True,or运算结果就是True:

>>> True or True

True

>>> True or False

True

>>> False or False

False

not运算是非运算,它是一个单目运算符,把True变成False,False变成True:

>>> not True

False

>>> not False

True

布尔值经常用在条件判断中,比如:

if age >= 18:

print 'adult'

else:

print 'teenager'

空值

空值是Python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

此外,Python还提供了列表、字典等多种数据类型,还允许创建自定义数据类型,我们后面会继续讲到。

变量

变量的概念基本上和初中代数的方程变量是一致的,只是在计算机程序中,变量不仅可以是数字,还可以是任意数据类型。

变量在程序中就是用一个变量名表示了,变量名必须是大小写英文、数字和_的组合,且不能用数字开头,比如:

a = 1

变量a是一个整数。

t_007 = 'T007'

变量t_007是一个字符串。

Answer = True

变量Answer是一个布尔值True。

在Python中,等号=是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同类型的变量,例如:

a = 123 #a是整数

printa

a= 'ABC' #a变为字符串

print a

这种变量本身类型不固定的语言称之为动态语言,与之对应的是静态语言。静态语言在定义变量时必须指定变量类型,如果赋值的时候类型不匹配,就会报错。例如Java是静态语言,赋值语句如下(// 表示注释):

int a = 123; // a是整数类型变量

a = "ABC"; // 错误:不能把字符串赋给整型变量

和静态语言相比,动态语言更灵活,就是这个原因。

请不要把赋值语句的等号等同于数学的等号。比如下面的代码:

x = 10

x = x + 2

如果从数学上理解x = x + 2那无论如何是不成立的,在程序中,赋值语句先计算右侧的表达式x + 2,得到结果12,再赋给变量x。由于x之前的值是10,重新赋值后,x的值变成12。

最后,理解变量在计算机内存中的表示也非常重要。当我们写:

a = 'ABC'

时,Python解释器干了两件事情:

在内存中创建了一个'ABC'的字符串;

在内存中创建了一个名为a的变量,并把它指向'ABC'。

也可以把一个变量a赋值给另一个变量b,这个操作实际上是把变量b指向变量a所指向的数据,例如下面的代码:

a = 'ABC'

b = a

a = 'XYZ'

print b

最后一行打印出变量b的内容到底是'ABC'呢还是'XYZ'?如果从数学意义上理解,就会错误地得出b和a相同,也应该是'XYZ',但实际上b的值是'ABC',让我们一行一行地执行代码,就可以看到到底发生了什么事:

执行a = 'ABC',解释器创建了字符串'ABC'和变量a,并把a指向'ABC':

执行b = a,解释器创建了变量b,并把b指向a指向的字符串'ABC':

执行a = 'XYZ',解释器创建了字符串'XYZ',并把a的指向改为'XYZ',但b并没有更改:

所以,最后打印变量b的结果自然是'ABC'了。

常量

所谓常量就是不能变的变量,比如常用的数学常数π就是一个常量。在Python中,通常用全部大写的变量名表示常量:

PI = 3.14159265359

但事实上PI仍然是一个变量,Python根本没有任何机制保证PI不会被改变,所以,用全部大写的变量名表示常量只是一个习惯上的用法,如果你一定要改变变量PI的值,也没人能拦住你。

最后解释一下整数的除法为什么也是精确的,可以试试:

>>> 10 / 3

3

你没有看错,整数除法永远是整数,即使除不尽。要做精确的除法,只需把其中一个整数换成浮点数做除法就可以:

>>> 10.0 / 3

3.3333333333333335

因为整数除法只取结果的整数部分,所以Python还提供一个余数运算,可以得到两个整数相除的余数:

>>> 10 % 3

1

无论整数做除法还是取余数,结果永远是整数,所以,整数运算结果永远是精确的。

小结

Python支持多种数据类型,在计算机内部,可以把任何数据都看成一个“对象”,而变量就是在程序中用来指向这些数据对象的,对变量赋值就是把数据和变量给关联起来。

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值