signature=03f40fafa03061750cab5b594147d162,On the scalar curvature of self-dual manifolds

这篇博客回顾了Atiyah-Hitchin-Singer的工作,探讨了自旋场在4维黎曼几何中的自守性问题,涉及了超弦理论、Kaluza-Klein理论、自双曲流形、超引力多极子等核心概念。文章还引用了多位学者的研究成果,展示了这些理论在数学和物理领域的交叉应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[A-H-S]

Atiyah, M., Hitchin, N., Singer, I.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond., Ser. A362, 425–461 (1978)

[Be]

Besse, A.: Einstein manifolds, pp. 390–393. Berlin Heidelberg New York: Springer 1986

[Bea]

Beardon, A.F.: The Hausdorff dimension of singular sets of properly discontinuous groups. Am. J. Math.88, 722–736 (1966)

[Br]

Braam, P.: A Kaluza-Klein approach to hyperbolic three manifolds. Enseign. Math.34, 275–311 (1988)

[D-F]

Donaldson, S.K., Friedman, R.: Connected sums of self-dual manifolds and deformation of singular spaces. Nonlinearity2, 197–239 (1989)

[Fla]

Flaherty, E.J.: The non-linear graviton in interaction with a photon. Gen. Relativ. Gravitation9, 961–978 (1978)

[F1]

Floer, A.: Self-dual conformal structures onl

CP

2. J. Differ. Geom.33 (no. 2), 551–574 (March 1991)

[Gau]

Gauduchon, P.: Surfaces Kählériennes dont la courbure vérifie certaines conditions de positivé. In: Bérard-Bergery, L., Berger, M., Houzel, C. (eds.) Géometrie Riemannienne en dimension 4. Séminaire A. Besse, 1978/1979. Paris: CEDIC/Fernand Nathan 1981

[G-H]

Gibbons, G., Hawking, S.W.: Gravitational multi-instantons. Phys. Lett.78B, 430–432 (1978)

[Gr]

Graham, C.R.: Dirichlet problem for the Bergermann Laplacian II. Commun. Partial Differ Equations8, 563–641 (1983)

[Ki1]

Kim, J.S.: A generalized construction of self-dual metrics by hyperbolic manifolds. (Preprint 1990)

[Ki2]

Kim, J.S.: On a class of 4-dimensional minimum energy metrics and hyperbolic geometry. Stony Brook Thesis (1991)

[K-K]

King, A.D., Kotschick, D.: The deformation theory of anti-self-dual conformal structures. (Preprint 1991)

[Ku]

Kuiper, N.: On conformally flat manifolds in the large. Ann. Math.52, 478–490 (1950)

[L1]

LeBrun, C.: On the topology of self-dual 4-manifolds. Proc. Am. Math. Soc.98, 637–640 (1986)

[L2]

LeBrun, G.: Explicit self-dual metrics onCP

2#...#CP

2. J. Differ. Geom.34, 223–253 (1991)

[L3]

LeBrun, C.: Scalar-flat Kähler metrics on blown-up ruled surfaces. J. Reine Angew. Math.420, 161–177 (1991)

[L4]

LeBrun, C.: Self-dual manifolds and hyperbolic geometry. (Lect. Notes Math.) Berlin Heidelberg New York: Springer (to appear)

[Ma]

Maskit, B.: Kleinian groups (Grundlehren Math. Wiss.) Berlin Heidelberg New York: Springer 1987

[Mo]

Morgan, J.W.: On Thurston's uniformization theorem for three dimensional manifolds. In: Morgan, J., Bass, H. (eds.) Proceedings of the Smith Conjecture Symposium, Columbia University 1979, Chap. 5. New York London: Academic Press 1984

[Pe]

Penrose, R.: Nonlinear gravitons and curved twistor theory. Gen. Relat. Gravitation7(no. 1), 31–52 (1976)

[Po]

Poon, Y.S.: Compact self-dual manifolds with positive scalar curvature. J. Differ. Geom.24, 97–132 (1986)

[Sc]

Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvatures. J. Differ. Geom.20, 479–495 (1984)

[Su]

Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Publ. Math., Inst. Hautes Étud. Sci.50, (1979)

[S-Y]

Schoen, R., Yau, S.T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math.92, 47–71 (1988)

[Ta]

Taubes, C.H.: Existence of anti-self-dual metrics. (Preprint 1991)

[Th]

Thurston, W.P.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull Am. Math. Soc.6, no. 3 (May, 1982)

[Y]

Yau, S.T.: On the Ricci-curvature of a complex Kähler manifold and the complex Monge-Ampère equations. Commun. Pure Appl. Math.31, 339–411 (1978)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值