[A-H-S]
Atiyah, M., Hitchin, N., Singer, I.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond., Ser. A362, 425–461 (1978)
[Be]
Besse, A.: Einstein manifolds, pp. 390–393. Berlin Heidelberg New York: Springer 1986
[Bea]
Beardon, A.F.: The Hausdorff dimension of singular sets of properly discontinuous groups. Am. J. Math.88, 722–736 (1966)
[Br]
Braam, P.: A Kaluza-Klein approach to hyperbolic three manifolds. Enseign. Math.34, 275–311 (1988)
[D-F]
Donaldson, S.K., Friedman, R.: Connected sums of self-dual manifolds and deformation of singular spaces. Nonlinearity2, 197–239 (1989)
[Fla]
Flaherty, E.J.: The non-linear graviton in interaction with a photon. Gen. Relativ. Gravitation9, 961–978 (1978)
[F1]
Floer, A.: Self-dual conformal structures onl
CP
2. J. Differ. Geom.33 (no. 2), 551–574 (March 1991)
[Gau]
Gauduchon, P.: Surfaces Kählériennes dont la courbure vérifie certaines conditions de positivé. In: Bérard-Bergery, L., Berger, M., Houzel, C. (eds.) Géometrie Riemannienne en dimension 4. Séminaire A. Besse, 1978/1979. Paris: CEDIC/Fernand Nathan 1981
[G-H]
Gibbons, G., Hawking, S.W.: Gravitational multi-instantons. Phys. Lett.78B, 430–432 (1978)
[Gr]
Graham, C.R.: Dirichlet problem for the Bergermann Laplacian II. Commun. Partial Differ Equations8, 563–641 (1983)
[Ki1]
Kim, J.S.: A generalized construction of self-dual metrics by hyperbolic manifolds. (Preprint 1990)
[Ki2]
Kim, J.S.: On a class of 4-dimensional minimum energy metrics and hyperbolic geometry. Stony Brook Thesis (1991)
[K-K]
King, A.D., Kotschick, D.: The deformation theory of anti-self-dual conformal structures. (Preprint 1991)
[Ku]
Kuiper, N.: On conformally flat manifolds in the large. Ann. Math.52, 478–490 (1950)
[L1]
LeBrun, C.: On the topology of self-dual 4-manifolds. Proc. Am. Math. Soc.98, 637–640 (1986)
[L2]
LeBrun, G.: Explicit self-dual metrics onCP
2#...#CP
2. J. Differ. Geom.34, 223–253 (1991)
[L3]
LeBrun, C.: Scalar-flat Kähler metrics on blown-up ruled surfaces. J. Reine Angew. Math.420, 161–177 (1991)
[L4]
LeBrun, C.: Self-dual manifolds and hyperbolic geometry. (Lect. Notes Math.) Berlin Heidelberg New York: Springer (to appear)
[Ma]
Maskit, B.: Kleinian groups (Grundlehren Math. Wiss.) Berlin Heidelberg New York: Springer 1987
[Mo]
Morgan, J.W.: On Thurston's uniformization theorem for three dimensional manifolds. In: Morgan, J., Bass, H. (eds.) Proceedings of the Smith Conjecture Symposium, Columbia University 1979, Chap. 5. New York London: Academic Press 1984
[Pe]
Penrose, R.: Nonlinear gravitons and curved twistor theory. Gen. Relat. Gravitation7(no. 1), 31–52 (1976)
[Po]
Poon, Y.S.: Compact self-dual manifolds with positive scalar curvature. J. Differ. Geom.24, 97–132 (1986)
[Sc]
Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvatures. J. Differ. Geom.20, 479–495 (1984)
[Su]
Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Publ. Math., Inst. Hautes Étud. Sci.50, (1979)
[S-Y]
Schoen, R., Yau, S.T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math.92, 47–71 (1988)
[Ta]
Taubes, C.H.: Existence of anti-self-dual metrics. (Preprint 1991)
[Th]
Thurston, W.P.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull Am. Math. Soc.6, no. 3 (May, 1982)
[Y]
Yau, S.T.: On the Ricci-curvature of a complex Kähler manifold and the complex Monge-Ampère equations. Commun. Pure Appl. Math.31, 339–411 (1978)