linux 输入模型结构的使用,Linux设备模型之input子系统详解(二)

;           break;

}

if (type != EV_SYN)

dev->sync = 0;

if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)

dev->event(dev, type, code, value);

if (disposition & INPUT_PASS_TO_HANDLERS)

input_pass_event (dev, type, code, value);

}

在这里,我们忽略掉具体事件的处理.到最后,如果该事件需要input device来完成的,就会将disposition设置成INPUT_PASS_TO_DEVICE.如果需要handler来完成的,就将dispostion设为INPUT_PASS_TO_DEVICE.如果需要两者都参与,将disposition设置为INPUT_PASS_TO_ALL.

需要输入设备参与的,回调设备的event函数.如果需要handler参与的.调用input_pass_event().代码如下:

static void input_pass_event(struct input_dev *dev,

unsigned int type, unsigned int code, int value)

{

struct input_handle *handle;

rcu_read_lock();

handle = rcu_dereference(dev->grab);

if (handle)

handle->handler->event(handle, type, code, value);

else

list_for_each_entry_rcu(handle, &dev->h_list, d_node)

if (handle->open)

handle->handler->event(handle,

type, code, value);

rcu_read_unlock();

}

如果input device被强制指定了handler,则调用该handler的event函数.

结合handle注册的分析.我们知道.会将handle挂到input device的h_list链表上.

如果没有为input device强制指定handler.就会遍历input device->h_list上的handle成员.如果该handle被打开,则调用与输入设备对应的handler的event()函数.注意,只有在handle被打开的情况下才会接收到事件.

另外,输入设备的handler强制设置一般是用带EVIOCGRAB标志的ioctl来完成的.如下是发图的方示总结evnet的处理过程:

我们已经分析了input device,handler和handle的注册过程以及事件的上报和处理.下面以evdev为实例做分析.来贯穿理解一下整个过程.

七:evdev概述

Evdev对应的设备节点一般位于/dev/input/event0 ~ /dev/input/event4.理论上可以对应32个设备节点.分别代表被handler匹配的32个input device.

可以用cat /dev/input/event0.然后移动鼠标或者键盘按键就会有数据输出(两者之间只能选一.因为一个设备文件只能关能一个输入设备).还可以往这个文件里写数据,使其产生特定的事件.这个过程我们之后再详细分析.

为了分析这一过程,必须从input子系统的初始化说起.

八:input子系统的初始化

Input子系统的初始化函数为input_init().代码如下:

static int __init input_init(void)

{

int err;

err = class_register(&input_class);

if (err) {

printk(KERN_ERR "input: unable to register input_dev class\n");

return err;

}

err = input_proc_init();

if (err)

goto fail1;

err = register_chrdev(INPUT_MAJOR, "input", &input_fops);

if (err) {

printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);

goto fail2;

}

return 0;

fail2:        input_proc_exit();

fail1:        class_unregister(&input_class);

return err;

}

在这个初始化函数里,先注册了一个名为”input”的类.所有input device都属于这个类.在sysfs中表现就是.所有input device所代表的目录都位于/dev/class/input下面.

然后调用input_proc_init()在/proc下面建立相关的交互文件.

再后调用register_chrdev()注册了主设备号为INPUT_MAJOR(13).次设备号为0~255的字符设备.它的操作指针为input_fops.

在这里,我们看到.所有主设备号13的字符设备的操作最终都会转入到input_fops中.在前面分析的/dev/input/event0~/dev/input/event4的主设备号为13.操作也不例外的落在了input_fops中.

Input_fops定义如下:

static const struct file_operations input_fops = {

.owner = THIS_MODULE,

.open = input_open_file,

};

打开文件所对应的操作函数为input_open_file.代码如下示:

static int input_open_file(struct inode *inode, struct file *file)

{

struct input_handler *handler = input_table[iminor(inode) >> 5];

const struct file_operations *old_fops, *new_fops = NULL;

int err;

/* No load-on-demand here? */

if (!handler || !(new_fops = fops_get(handler->fops)))

return -ENODEV;

iminor(inode)为打开文件所对应的次设备号.input_table是一个struct input_handler全局数组.在这里.它先设备结点的次设备号右移5位做为索引值到input_table中取对应项.从这里我们也可以看到.一个handle代表1<<5个设备节点(因为在input_table中取值是以次备号右移5位为索引的.即低5位相同的次备号对应的是同一个索引).在这里,终于看到了input_talbe大显身手的地方了.input_talbe[ ]中取值和input_talbe[ ]的赋值,这两个过程是相对应的.

在input_table中找到对应的handler之后,就会检验这个handle是否存,是否带有fops文件操作集.如果没有.则返回一个设备不存在的错误.

/*

* That's _really_ odd. Usually NULL ->open means "nothing special",

* not "no device". Oh, well...

*/

if (!new_fops->open) {

fops_put(new_fops);

return -ENODEV;

}

old_fops = file->f_op;

file->f_op = new_fops;

err = new_fops->open(inode, file);

if (err) {

fops_put(file->f_op);

file->f_op = fops_get(old_fops);

}

fops_put(old_fops);

return err;

}

然后将handler中的fops替换掉当前的fops.如果新的fops中有open()函数,则调用它.

九:evdev的初始化

Evdev的模块初始化函数为evdev_init().代码如下:

static int __init evdev_init(void)

{

return input_register_handler(&evdev_handler);

}

它调用了input_register_handler注册了一个handler.

注意到,在这里evdev_handler中定义的minor为EVDEV_MINOR_BASE(64).也就是说evdev_handler所表示的设备文件范围为(13,64)à(13,64+32).

从之前的分析我们知道.匹配成功的关键在于handler中的blacklist和id_talbe. Evdev_handler的id_table定义如下:

static const struct input_device_id evdev_ids[] = {

{ .driver_info = 1 },     /* Matches all devices */

{ },                       /* Terminating zero entry */

};

它没有定义flags.也没有定义匹配属性值.这个handler是匹配所有input device的.从前面的分析我们知道.匹配成功之后会调用handler->connect函数.

在Evdev_handler中,该成员函数如下所示:

static int evdev_connect(struct input_handler *handler, struct input_dev *dev,

const struct input_device_id *id)

{

struct evdev *evdev;

int minor;

int error;

for (minor = 0; minor < EVDEV_MINORS; minor++)

if (!evdev_table[minor])

break;

if (minor == EVDEV_MINORS) {

printk(KERN_ERR "evdev: no more free evdev devices\n");

return -ENFILE;

}

EVDEV_MINORS定义为32.表示evdev_handler所表示的32个设备文件.evdev_talbe是一个struct evdev类型的数组.struct evdev是模块使用的封装结构.在接下来的代码中我们可以看到这个结构的使用.

这一段代码的在evdev_talbe找到为空的那一项.minor就是数组中第一项为空的序号.

evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);

if (!evdev)

return -ENOMEM;

INIT_LIST_HEAD(&evdev->client_list);

spin_lock_init(&evdev->client_lock);

mutex_init(&evdev->mutex);

init_waitqueue_head(&evdev->wait);

snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);

evdev->exist = 1;

evdev->minor = minor;

evdev->handle.dev = input_get_device(dev);

evdev->handle.name = evdev->name;

evdev->handle.handler = handler;

evdev->handle.private = evdev;

接下来,分配了一个evdev结构,并对这个结构进行初始化.在这里我们可以看到,这个结构封装了一个handle结构,这结构与我们之前所讨论的handler是不相同的.注意有一个字母的差别哦.我们可以把handle看成是handler和input device的信息集合体.在这个结构里集合了匹配成功的handler和input device

strlcpy(evdev->dev.bus_id, evdev->name, sizeof(evdev->dev.bus_id));

evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);

evdev->dev.class = &input_class;

evdev->dev.parent = &dev->dev;

evdev->dev.release = evdev_free;

device_initialize(&evdev->dev);

在这段代码里主要完成evdev封装的device的初始化.注意在这里,使它所属的类指向input_class.这样在/sysfs中创建的设备目录就会在/sys/class/input/下面显示.

error = input_register_handle(&evdev->handle);

if (error)

goto err_free_evdev;

error = evdev_install_chrdev(evdev);

if (error)

goto err_unregister_handle;

error = device_add(&evdev->dev);

if (error)

goto err_cleanup_evdev;

return 0;

err_cleanup_evdev:

evdev_cleanup(evdev);

err_unregister_handle:

input_unregister_handle(&evdev->handle);

err_free_evdev:

put_device(&evdev->dev);

return error;

}

注册handle,如果是成功的,那么调用evdev_install_chrdev将evdev_table的minor项指向evdev. 然后将evdev->device注册到sysfs.如果失败,将进行相关的错误处理.

万事俱备了,但是要接收事件,还得要等”东风”.这个”东风”就是要打开相应的handle.这个打开过程是在文件的open()中完成的.

十:evdev设备结点的open()操作

我们知道.对主设备号为INPUT_MAJOR的设备节点进行操作,会将操作集转换成handler的操作集.在evdev中,这个操作集就是evdev_fops.对应的open函数如下示:

static int evdev_open(struct inode *inode, struct file *file)

{

struct evdev *evdev;

struct evdev_client *client;

int i = iminor(inode) - EVDEV_MINOR_BASE;

int error;

if (i >= EVDEV_MINORS)

return -ENODEV;

error = mutex_lock_interruptible(&evdev_table_mutex);

if (error)

return error;

evdev = evdev_table[i];

if (evdev)

get_device(&evdev->dev);

mutex_unlock(&evdev_table_mutex);

if (!evdev)

return -ENODEV;

client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);

if (!client) {

error = -ENOMEM;

goto err_put_evdev;

}

spin_lock_init(&client->buffer_lock);

client->evdev = evdev;

evdev_attach_client(evdev, client);

error = evdev_open_device(evdev);

if (error)

goto err_free_client;

file->private_data = client;

return 0;

err_free_client:

evdev_detach_client(evdev, client);

kfree(client);

err_put_evdev:

put_device(&evdev->dev);

return error;

}

iminor(inode) - EVDEV_MINOR_BASE就得到了在evdev_table[ ]中的序号.然后将数组中对应的evdev取出.递增devdev中device的引用计数.

分配并初始化一个client.并将它和evdev关联起来: client->evdev指向它所表示的evdev. 将client挂到evdev->client_list上. 将client赋为file的私有区.

对应handle的打开是在此evdev_open_device()中完成的.代码如下:

static int evdev_open_device(struct evdev *evdev)

{

int retval;

retval = mutex_lock_interruptible(&evdev->mutex);

if (retval)

return retval;

if (!evdev->exist)

retval = -ENODEV;

else if (!evdev->open++) {

retval = input_open_device(&evdev->handle);

if (retval)

evdev->open--;

}

mutex_unlock(&evdev->mutex);

return retval;

}

如果evdev是第一次打开,就会调用input_open_device()打开evdev对应的handle.跟踪一下这个函数:

int input_open_device(struct input_handle *handle)

{

struct input_dev *dev = handle->dev;

int retval;

retval = mutex_lock_interruptible(&dev->mutex);

if (retval)

return retval;

if (dev->going_away) {

retval = -ENODEV;

goto out;

}

handle->open++;

if (!dev->users++ && dev->open)

retval = dev->open(dev);

if (retval) {

dev->users--;

if (!--handle->open) {

/*

* Make sure we are not delivering any more events

* through this handle

*/

synchronize_rcu();

}

}

out:

mutex_unlock(&dev->mutex);

return retval;

}

在这个函数中,我们看到.递增handle的打开计数.如果是第一次打开.则调用input device的open()函数.

十一:evdev的事件处理

经过上面的分析.每当input device上报一个事件时,会将其交给和它匹配的handler的event函数处理.在evdev中.这个event函数对应的代码为:

static void evdev_event(struct input_handle *handle,

unsigned int type, unsigned int code, int value)

{

struct evdev *evdev = handle->private;

struct evdev_client *client;

struct input_event event;

do_gettimeofday(&event.time);

event.type = type;

event.code = code;

event.value = value;

rcu_read_lock();

client = rcu_dereference(evdev->grab);

if (client)

evdev_pass_event(client, &event);

else

list_for_each_entry_rcu(client, &evdev->client_list, node)

evdev_pass_event(client, &event);

rcu_read_unlock();

wake_up_interruptible(&evdev->wait);

}

首先构造一个struct input_event结构.并设备它的type.code,value为处理事件的相关属性.如果该设备被强制设置了handle.则调用如之对应的client.

我们在open的时候分析到.会初始化clinet并将其链入到evdev->client_list. 这样,就可以通过evdev->client_list找到这个client了.

对于找到的第一个client都会调用evdev_pass_event( ).代码如下:

static void evdev_pass_event(struct evdev_client *client,

struct input_event *event)

{

/*

* Interrupts are disabled, just acquire the lock

*/

spin_lock(&client->buffer_lock);

client->buffer[client->head++] = *event;

client->head &= EVDEV_BUFFER_SIZE - 1;

spin_unlock(&client->buffer_lock);

kill_fasync(&client->fasync, SIGIO, POLL_IN);

}

这里的操作很简单.就是将event保存到client->buffer中.而client->head就是当前的数据位置.注意这里是一个环形缓存区.写数据是从client->head写.而读数据则是从client->tail中读.

十二:设备节点的read处理

对于evdev设备节点的read操作都会由evdev_read()完成.它的代码如下:

static ssize_t evdev_read(struct file *file, char __user *buffer,

size_t count, loff_t *ppos)

{

struct evdev_client *client = file->private_data;

struct evdev *evdev = client->evdev;

struct input_event event;

int retval;

if (count < evdev_event_size())

return -EINVAL;

if (client->head == client->tail && evdev->exist &&

(file->f_flags & O_NONBLOCK))

return -EAGAIN;

retval = wait_event_interruptible(evdev->wait,

client->head != client->tail || !evdev->exist);

if (retval)

return retval;

if (!evdev->exist)

return -ENODEV;

while (retval + evdev_event_size() <= count &&

evdev_fetch_next_event(client, &event)) {

if (evdev_event_to_user(buffer + retval, &event))

return -EFAULT;

retval += evdev_event_size();

}

return retval;

}

首先,它判断缓存区大小是否足够.在读取数据的情况下,可能当前缓存区内没有数据可读.在这里先睡眠等待缓存区中有数据.如果在睡眠的时候,.条件满足.是不会进行睡眠状态而直接返回的.

然后根据read()提够的缓存区大小.将client中的数据写入到用户空间的缓存区中.

十三:设备节点的写操作

同样.对设备节点的写操作是由evdev_write()完成的.代码如下:

static ssize_t evdev_write(struct file *file, const char __user *buffer,

size_t count, loff_t *ppos)

{

struct evdev_client *client = file->private_data;

struct evdev *evdev = client->evdev;

struct input_event event;

int retval;

retval = mutex_lock_interruptible(&evdev->mutex);

if (retval)

return retval;

if (!evdev->exist) {

retval = -ENODEV;

goto out;

}

while (retval < count) {

if (evdev_event_from_user(buffer + retval, &event)) {

retval = -EFAULT;

goto out;

}

input_inject_event(&evdev->handle,

event.type, event.code, event.value);

retval += evdev_event_size();

}

out:

mutex_unlock(&evdev->mutex);

return retval;

}

首先取得操作设备文件所对应的evdev.

实际上,这里写入设备文件的是一个event结构的数组.我们在之前分析过,这个结构里包含了事件的type.code和event.

将写入设备的event数组取出.然后对每一项调用event_inject_event().

这个函数的操作和input_event()差不多.就是将第一个参数handle转换为输入设备结构.然后这个设备再产生一个事件.

代码如下:

void input_inject_event(struct input_handle *handle,

unsigned int type, unsigned int code, int value)

{

struct input_dev *dev = handle->dev;

struct input_handle *grab;

unsigned long flags;

if (is_event_supported(type, dev->evbit, EV_MAX)) {

spin_lock_irqsave(&dev->event_lock, flags);

;                rcu_read_lock();

grab = rcu_dereference(dev->grab);

if (!grab || grab == handle)

input_handle_event(dev, type, code, value);

rcu_read_unlock();

spin_unlock_irqrestore(&dev->event_lock, flags);

}

}

我们在这里也可以跟input_event()对比一下,这里设备可以产生任意事件,而不需要和设备所支持的事件类型相匹配.

由此可见.对于写操作而言.就是让与设备文件相关的输入设备产生一个特定的事件.

将上述设备文件的操作过程以图的方式表示如下:

十四:小结

在这一节点,分析了整个input子系统的架构,各个环节的流程.最后还以evdev为例.将各个流程贯穿在一起.以加深对input子系统的理解.由此也可以看出.linux设备驱动采用了分层的模式.从最下层的设备模型到设备,驱动,总线再到input子系统最后到input device.这样的分层结构使得最上层的驱动不必关心下层是怎么实现的.而下层驱动又为多种型号同样功能的驱动提供了一个统一的接口.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值