python 多帧 超分辨_Pytorch实现多帧超分辨率(MFSR)网络HighRes-net

介绍HighRes-net,一种用于多帧超分辨率的神经网络。该项目使用PyTorch实现,并在欧洲航天局的Kelvin竞赛数据集上进行了训练和测试。包括设置Python环境、安装依赖、加载数据、训练模型及测试流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HighRes-net: Multi Frame Super-Resolution by Recursive Fusion

Pytorch implementation of HighRes-net, a neural network for multi frame super-resolution (MFSR), trained and tested on the European Space Agency's Kelvin competition.

Computer, enhance please!

source: ElementAI blog post Computer, enhance please!

A recipe to enhance the vision of the ESA satellite Proba-V

Hardware:

The default config should work on a machine with:

GPU: Nvidia Tesla v100, memory 32G

Driver version: CUDA 10.0

CPU: memory 8G to enable running jupyter notebook server and tensorboard server

If your available GPU memory is less than 32G, try following to reduce the memory usage

(1) Work with smaller batches (batch_size in config.json)

(2) Work with less low-res views (n_views and min_L in config.json, min_L is minimum number of views (n_views))

According to our experiments, we estimated the memory consumption (in GB) given batch_size and n_views

batch_size \ n_views and min_L

32

16

4

32

27

15

6

16

15

8

4

0. Setup python environment

Setup a python environment and install dependencies, we need python version >= 3.6.8

pip install -r requirements.txt

1. Load data and save clearance

Download the data from the Kelvin Competition and unzip it under data/

Run the save_clearance script to precompute clearance scores for low-res views

python src/save_clearance.py --prefix /path/to/ESA_data

2. Train model and view logs (with TensorboardX)

Train a model with default config

python src/train.py --config config/config.json

View training logs with tensorboardX

tensorboard --logdir='tb_logs/'

3. Test model

Open jupyter notebook and run notebooks/test_model.ipynb

We assume the jupyter notebook server runs in project root directory. If you start it in somewhere else, please change the file path in notebooks accordingly

You could also use docker-compose file to start jypyter notebook and tensorboard

Authors

License

This repo is under apache-2.0 and no harm license, please refer our license file

Acknowledgments

Special thanks to Laure Delisle, Grace Kiser, Alexandre Lacoste, Yoshua Bengio, Peter Henderson, Manon Gruaz, Morgan Guegan and Santiago Salcido for their support.

We are grateful to Marcus Märtens, Dario Izzo, Andrej Krzic and Daniel Cox from the Advanced Concept Team of the ESA for organizing this competition and assembling the dataset — we hope our solution will contribute to your vision for scalable environmental monitoring.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值