红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。
红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。
红黑树是一种特化的AVL树(平衡二叉树),都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。
红黑树虽然复杂,但它的最坏情况运行时间也是非常良好的,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。
红黑树是树的数据结构中最为重要的一种。Java的容器TreeSet、TreeMap均使用红黑树实现。JDK1.8中HashMap中也加入了红黑树。C++ STL中的map和set同样使用红黑树实现。
红黑树保证在O(logN)的时间内完成查找、插入和删除操作。
红黑树是每个节点都带有颜色属性的平衡二叉查找树 ,颜色为红色或黑色。除了二叉查找树一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
(1)节点是要么红色或要么是黑色。
(2)根一定是黑色节点。
(3)每个叶子节点都带有两个空的黑色节点(称之为NIL节点,它又被称为黑哨兵)。
(4)每个红色节点的两个子节点都是黑色(或者说从每个叶子到根的所有路径上不能有两个连续的红色节点)。
(5)从任一节点到它所能到达得叶子节点的所有简单路径都包含相同数目的黑色节点。
定义节点名称:
父节点——P(Parent)
祖父节点——G(GrandParent)
叔叔节点——U(Uncle)
当前节点——C(Current)
兄弟节点——B(Brother)
左孩子——L(Left)
右孩子——R(Right)
根节点到任意叶子节点的路径长度,最多相差一半。若树存在最短路径,则最短路径上均为黑色节点,那么第五条性质保证根节点到达最长路径与最短路径所包含的黑色节点数目相同,若最短路径长为N,则最长路径M=N+红色节点数目,性质4要求红色节点必定不连续,因此红色节点数目最多为N,则最长路径与最短路径最多相差N。
通过本课程的学习你会深入理解红黑树工作的原理,左旋转,右旋转等概念,学习本课程后你完全可以自己手写一个简单的红黑树。