贝叶斯定理
已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:
表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面直接给出贝叶斯定理:
package com.immooc.spark
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.{SparkConf, SparkContext}
object NaiveBayesTest {
def main(args:Array[String]): Unit = {
val conf = new SparkConf().setAppName("NaiveBayes").setMaster("local[2]")
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN)
val data = sc.textFile("file:///Users/walle/Documents/D3/sparkmlib/football.txt")
val parsedData = data.map{ line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}
val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0)
val test = splits(1)
val model = NaiveBayes.train(training, lambda = 1.0, modelType = "multinomial")
val predictionAndLabel = test.map(p => (model.predict(p.features), p.label))
val print_predict = predictionAndLabel.take(20)
for (i
println(print_predict(i)._1 + "\t" + print_predict(i)._2)
}
println("Predictionof (0.0, 2.0, 0.0, 1.0):"+model.predict(Vectors.dense(0.0,2.0,0.0,1.0)))
}
}
1. 数据0,0 0 0 0
0,0 0 0 1
1,1 0 0 0
1,2 1 0 0
1,2 2 1 0
0,2 2 1 1
1,1 2 1 1
0,0 1 0 0
1,0 2 1 0
1,2 1 1 0
1,0 1 1 1
1,1 1 0 1
1,1 0 1 0
0,2 1 0 1
2. 输出1.01.0
1.01.0
0.01.0
1.01.0
0.00.0
Predictionof (0.0, 2.0, 0.0, 1.0):0.0
Post Views: 3
Related Posts 4671