fft 相位谱_谈谈FFT到底有何用(谨以此献给致力于FFT算法芯片设计的同行们)...

FFT(快速傅里叶变换)在数字信号处理中扮演关键角色,用于频谱分析、快速相关、快速卷积和谱估计。通过FFT,可以实现信号的高效分析、滤波和通信系统的构建,如OFDM技术。本文探讨了FFT的原理、应用及其在现代通信和信号处理中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FFT(快速傅里叶变换)是数字信号处理的超级经典算法,学过DSP或者芯片设计的人大多知道这个算法。但是,大家是否想过,为什么数字信号处理会有那么多FFT呢?有人会说,为了分析信号的频谱。那么下边的问题就是,分析频谱对我们的日常需求,比如手机打电话,雷达测量速度和方向等等一些与实际需求有什么联系?为什么FFT如此重要?本文举一些简明的例子,阐释一下FFT到底有什么用。

e1b33929a5cc3289dcd884ae4fbc030f.png

先回忆一下FFT是什么。上世纪70年代之前,我们主要通过模拟电路来进行信号处理,比如大家熟悉的用二极管和电容进行AM调制信号的包络检波一样,随着数字系统的普及,我们可以用处理器或者数字电路更为精确的处理信号,比如我们做AM检波,实际上可以用载波把信号混频(与余弦函数做乘法),再进行低通滤波,那么这个过程可以用数字电路的乘法器和FIR滤波器来做,FIR比二极管和电容构成的低通滤波器阶数高的多,性能自然更为理想,同时,由于数字电路易于做成集成电路,因此我们更多地是将原先的模拟信号(比如麦克风的音频)通过模拟-数字转换器,转换为数字值后进行处理。

这样的系统有几个问题,一个是信号需要被采样,其次是信号被分成若干量阶。信号被采样,也就意味着我们得到的不是原先的连续的信号了,而是一个离散的一些采集的样点。那么对时域信号进行采样,必然造成频谱的周期化,如果原先频谱仅限于有限的带宽,那么周期化之后,只要周期大于原先的带宽,那么实际上没有混叠失真。而数字电路限制我们只能进行乘加等二进制域的计算,获得另一些离散的点,因此我们不得不将频谱也进行“采样”,频域的抽样导致时域上又周期化了,好在如果我们只取有限的长度,可以假定没采集的部分进行的是周期化延拓(由于平稳系统认为信号可以分解为正余弦函数的组合,而正余弦函数是可以周期延拓的,所以这个假设没有问题),那么我们得到了时域和频域都是离散的周期延拓的点集。

既然是周期延拓的,那么延拓的部分和主值区间(靠近0的那个周期)是重复的数值,因此我们只保留主值区间的部分,这样的时域点集到频域点集的变换关系叫离散傅里叶变换(DFT)。然而它的运算过于复杂,因此库里和图基(Cooley,Tukey)两人力图化简它,找到了这个算法的一些内在运算规律,得到的运算量由原来的平方级降为NlogN级,这个算法就叫按时间抽取快速傅里叶变换,桑德和图基研究按频率抽取也可以得到类似的低复杂度算法,这类算法统称快速傅里叶变换(FFT),FFT的计算结果和DFT是完全等价的,只是运算量降低了。又由于时频变换能量不变(Parseval定理),所以频域的绝对数值没有意义了,只要获得相对数值即可,因此数字系统中的量化阶数以及数字系统溢出后的缩放调整对FFT的计算结果影响仅在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值