最近学习了基于FaceNet的Openface包。
在前面的文章里我们已经将图片中的人脸提取出来,并进行了对齐。接下来我们建立卷积网络,之后再使用triplet loss进行训练。
下面是卷积网络的代码。首先建立了Inception模块以供调用,接着建立了训练将调用的卷积网络。
# model: nn4.py
from torch import nn
from .BasicModule import BasicModule
from torch.nn import functional as F
class Inception(BasicModule):
def __init__(self, inputSize, kernelSize, kernelStride, outputSize, reduceSize, pool):
super(Inception, self).__init__()
self.layers = {}
poolFlag = True
fname = 0
for p in kernelSize, kernelStride, outputSize, reduceSize:
if len(p) == 4:
(_kernel, _stride, _output, _reduce) = p
self.layers[str(fname)] = nn.Sequential(
# Convolution 1*1
nn.Conv2d(inputSize, _reduce, 1),
nn.BatchNorm2d(_reduce),
nn.ReLU(),
# Convolution kernel*kernel
nn.Conv2d(_reduce, _output, _kernel, _stride),
nn.BatchNorm2d(_output),
nn.ReLU())
else