Read file
可以用来阅读csv和txt文本文件并预处理,可自行设定分割符
def load(path):
sp = re.compile("[,; ;]+")
df = pd.read_csv(path,sep='|',header=None,names=['zt'])[['zt']].dropna()
df['zt'] = df['zt'].apply(lambda s: list(filter(None, sp.split(s))))
df['cid'] = df['cid'].apply(lambda s: list(filter(None, sp.split(s))))
df['cname'] = df['cname'].apply(lambda s: list(filter(None, sp.split(s))))
df['keywords'] = df['keywords'].apply(lambda s: list(filter(None,sp.split(s))))
df['ll'] = df['ll'].apply(lambda s: list(filter(None, sp.split(s))))
df['cname'] = df['cname'].apply(lambda s: list(filter(None, s.split(','))))
df['keywords'] = df['keywords'].apply(lambda s: s.split())
df['le'] = df['le'].apply(lambda s: s.split())
return df[(df['zt'].map(len) > 0) & (df['cid'].map(len) > 0) &
(df['cname'].map(len) > 0) & (df['keywords'].map(len) > 0) &
(df['ll'].map(len) > 0) & (df['le'].map(len) > 0)]
1.apply()
当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示
In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [117]: frame
Out[117]:
b d e
Utah -0.029638 1.081563 1.280300
Ohio 0.647747 0.831136 -1.549481
Texas 0.513416 -0.884417 0.195343
Oregon -0.485454 -0.477388 -0.309548
In [118]: f = lambda x: x.max() - x.min()
In [119]: frame.apply(f)
Out[119]:
b 1.133201
d 1.965980
e 2.829781
dtype: float64
2.applymap()
如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示
In [120]: format = lambda x: '%.2f' % x
In [121]: frame.applymap(format)
Out[121]:
b d e
Utah -0.03 1.08 1.28
Ohio 0.65 0.83 -1.55
Texas 0.51 -0.88 0.20
Oregon -0.49 -0.48 -0.31
3.map()
map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示
In [122]: frame['e'].map(format)
Out[122]:
Utah 1.28
Ohio -1.55
Texas 0.20
Oregon -0.31
Name: e, dtype: object
Pandas数据清新
1. 删除多列数据
def drop_multiple_col(col_names_list, df):
df.drop(col_names_list, axis=1, inplace=True)
return df
2. 转换 Dtypes
def change_dtypes(col_int, col_float, df):
df[col_int] = df[col_int].astype('int32')
df[col_float] = df[col_float].astype('float32')
3. 将分类变量转换为数值变量
def convert_cat2num(df):
num_encode = {'col_1' : {'YES':1, 'NO':0},'col_2' : {'WON':1, 'LOSE':0, 'DRAW':0}} df.replace(num_encode, inplace=True)
4. 检查缺失的数据
def check_missing_data(df):
return df.isnull().sum().sort_values(ascending=False)
5. 删除列中的字符串
def remove_col_str(df):
df['col_1'].replace('\n', '', regex=True, inplace=True)
df['col_1'].replace(' &#.*', '', regex=True, inplace=True)
6. 删除列中的空格
def remove_col_white_space(df):
df[col] = df[col].str.lstrip()
7. 将两列字符串数据(在一定条件下)拼接起来
def concat_col_str_condition(df):
mask = df['col_1'].str.endswith('pil', na=False)
col_new = df[mask]['col_1'] + df[mask]['col_2']
col_new.replace('pil', ' ', regex=True, inplace=True)
8. 转换时间戳(从字符串类型转换为日期「DateTime」格式)
def convert_str_datetime(df):
df.insert(loc=2, column='timestamp', value=pd.to_datetime(df.transdate, format='%Y-%m-%d %H:%M:%S.%f'))