1012. K-based Numbers. Version 2
Time limit: 0.5 second
Memory limit: 16 MB
Memory limit: 16 MB
Let’s consider
K-based numbers, containing exactly
N digits. We define a number to be valid if its
K-based notation doesn’t contain two successive zeros. For example:
- 1010230 is a valid 7-digit number;
- 1000198 is not a valid number;
- 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers
N and
K, you are to calculate an amount of valid
K based numbers, containing
N digits.
You may assume that 2 ≤
K ≤ 10;
N ≥ 2;
N +
K ≤ 1800.
Input
The numbers
N and
K in decimal notation separated by the line break.
Output
The result in decimal notation.
Sample
input | output |
---|---|
2 10 | 90 |
Difficulty: 172
Printable version
Submit solution
Discussion (53)
All submissions (51204) All accepted submissions (13281) Solutions rating (7492)
All submissions (51204) All accepted submissions (13281) Solutions rating (7492)
题目我已经在之前解释过了,可以看
这里;
就是数据有点大,需要用大数。。。我用java写;
代码:
import java.math.BigDecimal;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.util.Scanner;
public class howell {
public static void main(String[] args)
{
Scanner scanf = new Scanner(System.in);
int n = scanf.nextInt();
int k = scanf.nextInt();
BigInteger dp[][] = new BigInteger[1800][2];
dp[1][0] = BigInteger.ONE;
dp[1][1] = BigInteger.valueOf(k - 1);
for(int i = 2; i <= n+1; i++)
{
dp[i][1] = dp[i - 1][0].add(dp[i - 1][1]);
dp[i][1] = dp[i][1].multiply(BigInteger.valueOf(k - 1));
dp[i][0] = dp[i - 1][1];
}
dp[n][1].add(dp[n][0]);
System.out.println(dp[n][1]);
}
}
发现不能加包名。。。