POJ 2155 Matrix(树状数组)

本文详细介绍了如何使用二维树状数组解决矩阵更新与查询问题,包括实现代码与算法原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matrix
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 31309 Accepted: 11411

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

Output

For each querying output one line, which has an integer representing A[x, y]. 

There is a blank line between every two continuous test cases. 

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng

首先给出二维树状数组的代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define ll long long

using namespace std;

int lowbit(int x)
{
    return x & -x;
}
void add(int x, int y, int k){
    for(int i=x; i<=n; i+=lowbit(i))
        for(int j=y; j<=n; j+=lowbit(j))
            c[i][j] += k;
}
int sum(int x,int y)
{
    int ans = 0;
    for(int i = x; i > 0; i-=lowbit(i))
        for(int j = y; j > 0; j-=lowbit(j))
            ans += c[i][j];
    return ans;
}

首先考虑一维的情况,更新[l, r],我们只需要c[l]和c[r + 1]即可(看下面就能明白吧)。。。。


那我们再来看一下二维数组吧。。。。


就上图这个类似容斥原理,就是要有如图四种,绿色部分表示取反一次,蓝色部分表示取反两次,黄色部分表示取反四次,最后实际取反操作是绿色部分。。

注意这又是一道区间更新+单点求值。。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define ll long long

using namespace std;
const int maxn = 1e3+7;

int tr[maxn][maxn], n;

int lowbit(int x)
{
    return x & -x;
}
void add(int x, int y, int k){
    for(int i=x; i<=n; i+=lowbit(i))
        for(int j=y; j<=n; j+=lowbit(j))
            tr[i][j] += k;
}
int getsum(int x,int y)
{
    int ans = 0;
    for(int i = x; i > 0; i-=lowbit(i))
        for(int j = y; j > 0; j-=lowbit(j))
            ans += tr[i][j];
    return ans;
}


int main()
{
    int t, cas = 0;
    scanf("%d", &t);
    while(t--) {
        if(cas != 0) printf("\n");
        int tt;
        scanf("%d%d", &n, &tt);
        memset(tr, 0, sizeof(tr));
        for(int i = 0; i <  tt; i++)
        {
            char op;
            int x, y, x1, y1;
            getchar();
            scanf("%c",&op);
            if(op == 'C')
                  scanf("%d%d%d%d", &x, &y, &x1, &y1),
                  add(x, y, 1), add(x1+1 , y, 1), add(x, y1+1, 1), add(x1+1, y1+1, 1);
            else
                  scanf("%d%d", &x, &y),
                  printf("%d\n", getsum(x, y)%2);
        }
        cas++;

    }
    return 0;
}

这个边更新边查询如果暴力复杂度好大啊!!!

至于为什么对2取余数,我先研究一波。。。。。

getsum(x,y)是这个点的值对2取余就是真实该点的值

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值