简述主成分分析法的基本步骤_主成分分析法的原理应用及计算步骤-z.doc

主成分分析是一种数据降维的方法,通过构造互不相关的综合指标来替代原有的相关变量。基本思想是选取方差最大的线性组合作为主成分,依次选出方差次大的组合。计算步骤包括计算协方差矩阵、求特征值和特征向量、选择主成分、计算主成分载荷和得分。当累积贡献率达到85%以上时,认为能充分反映原变量信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主成分分析法的原理应用及计算步骤-z

一、概述

在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠

二、基本原理

主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。

设F1表示原变量的第一个线性组合所形成的主成分指标,即,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差Var(F1)越大,表示1包含的信息越多。因此在所有的线性组合中选取的1应该是1,X2,…,XP的所有线性组合中方差最大的,故称1为第一主成分如果第一主成分不足以代表原来个指标的信息,再考虑选取2,为有效地反映原信息,1已有的信息就不需要再出现2中,2与F1要保持独立、不相关,用数学语言表达就是Cov(F1, F2)=0,1不相关的X1,X2,…,XP的所有线性组合中方差最大的,故称2为第二主成分,依此类推构造出……、Fm为原变量指标X1、X2……XP第……、第个主成分。

根据以上分析得知:

(1) Fi与Fj互不相关,即Cov(Fi,Fj) = 0,并有Var(Fi)=ai’Σai,其中Σ为X的协方差阵

(2)F1是X1,X2,…,Xp的一切线性组合(系数满足上述要求)中方差最大的,……,即Fm是与F1,F2,……,Fm-1都不相关的X1,X2,…,XP的所有线性组合中方差最大者。

F1,F2,…,Fm(m≤p)为构造的新变量指标,即原变量指标的第第个主成分i(i=1,2,…,m)关于原变量Xj(j=1,2 ,…, p)的表达式,即系数( i=1,2,…,m; j=1,2 ,…,p)。从数学上可以证明,原变量协方差矩阵的特征根是主成分的方差,所以前m个较大特征根就代表前m个较大的主成分方差值;原变量协方差矩阵前m个较大的特征值(这样选取才能保证主成分的方差依次最大)所对应的特征向量就是相应主成分Fi表达式的系数,为了加以限制,系数启用的是对应的单位化的特征向量,即有= 1。

(2)计算主成分载荷,主成分载荷是反映主成分Fi与原变量Xj之间的相互关联程度:

三、主成分分析法的计算步骤

主成分分析的具体步骤如下:

(1)计算协方差矩阵

计算样品数据的协方差矩阵:Σ=(sij)p(p,其中

i,j=1,2,…,p

(2)求出Σ的特征值及相应的正交化单位特征向量

Σ的前m个较大的特征值(1((2(…(m>0,就是前m个主成分对应的方差,对应的单位特征向量就是主成分Fi的关于原变量的系数,则原变量的第i个主成分Fi为:

Fi =X

主成分的方差(信息)贡献率用来反映信息量的大小,为:

(3)选择主成分

最终要选择几个主成分,即F1,F2,……,Fm中m的确定是通过方差(信息)累计贡献率G(m)来确定

当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m就是抽取的前m个主成分。

(4)计算主成分载荷

主成分载荷是反映主成分Fi与原变量Xj之间的相互关联程度,原来变量Xj(j=1,2 ,…, p)在诸主成分Fi(i=1,2,…,m)上的荷载 lij( i=1,2,…,m; j=1,2 ,…,p)。:

在SPSS软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。

(5)计算主成分得分

计算样品在m个主成分上的得分:

i = 1,2,…,m

实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:

其中:,

根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。②另一方面,根据协方差的公式可以推得标准化后的协方差就是原变量的相关系数,亦即,标准化后的变量的协方差矩阵就是原变量的相关系数矩阵。也就是说,在标准化前后变量的相关系数矩阵不变化。

根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是:

☆计算相关系数矩阵

☆求出相关系数矩阵的特征值及相应的正交化单位特征向量

☆选择主成分

☆计算主成分得分

总结:原指标相关系数矩阵相应的特征值(i为主成分方差的贡献,方差的贡献率为 ,越大,说明相应的主成分反映综合信息的能力越强,可根据(i的大小来提取主成分。每一个主成分的组合系数(原变量在该主成分上的载荷)就是相应特征值(i所对应的单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值