废话不多说,直接上代码看吧!
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#每个批次的大小和总共有多少个批次
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
#定义函数
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean) #平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
tf.summary.scalar('stddev', stddev) #标准差
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var) #直方图
#命名空间
with tf.name_scope("input"):
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784], name = "x_input")
y = tf.placeholder(tf.float32