>>> from PIL import Image
>>> test_image = Image.open('data/test_image.jpg')
# The image is an RGB image with a size of 8x8 pixels.
>>> print 'Image Mode: %s' % test_image.mode
Image Mode: RGB
>>> print 'Width: %s px, Height: %s px' % (test_image.size[0], test_image.size[1])
Width: 4 px, Height: 4 px
# Get the pixel values from the image and print them into rows based on
# the image's width.
>>> width, height = test_image.size
>>> pixels = list(test_image.getdata())
>>> for col in xrange(width):
... print pixels[col:col+width]
...
[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 255)]
[(0, 0, 0), (212, 45, 45), (51, 92, 154), (130, 183, 47)]
[(206, 210, 198), (131, 78, 8), (131, 156, 180), (117, 155, 201)]
[(104, 133, 170), (215, 130, 20), (153, 155, 155), (104, 142, 191)]
现在我们回到dHash算法,该算法有四个步骤,本文详细说明每一步并验证它在原始图像和修改后图像的效果。前三个像素的红绿蓝颜色强度值分别为255,其余两个颜色强度值分别为0,纯黑色像素三原色为0,纯白色像素三原色为255。其它颜色像素则是由不同强度三原色值组成的。
1.图像灰度化
通过灰度化图像,将像素值减少到一个发光强度值。例如,白色像素(255、255、255)成为255而黑色像素(0,0,0)强度值将成为0。
2.将图像缩小到一个常见大小
将图像缩减到一个常见基础尺寸,比如宽度大高度一个像素值的9*8像素大小(到第三步你就能明白为什么是这个尺寸)。通过这个方法将图像中的高频和细节部分移除,从而获得一个有72个强度值的样本。由于调整或者拉伸图像并不会改变它的哈希值,所以将所有图像归一化到该大小。
3.比较邻域像素
前两步实现后得到一个强度值列表,比较该二进制值数组的每一行的相邻像素。
>>> from PIL import Image
>>> img = Image.open('data/cat_grumpy_orig_after_step_2.png')
>>> width, height = img.size
>>> pixels = list(img.getdata())
>>> for col in xrange(width):
... print pixels[col:col+width]
...
[254, 254, 255, 253, 248, 254, 255, 254, 255]
[254, 255, 253, 248, 254, 255, 254, 255, 255]
[253, 248, 254, 255, 254, 255, 255, 255, 222]
[248, 254, 255, 254, 255, 255, 255, 222, 184]
[254, 255, 254, 255, 255, 255, 222, 184, 177]
[255, 254, 255, 255, 255, 222, 184, 177, 184]
[254, 255, 255, 255, 222, 184, 177, 184, 225]
[255, 255, 255, 222, 184, 177, 184, 225, 255]
第一个值254和第二个254做比较,第二个值和第三个值比,以此类推,从而每行得到8个布尔值。
>>> difference = []
>>> for row in xrange(height):
... for col in xrange(width):
... if col != width:
... difference.append(pixels[col+row] > pixels[(col+row)+1])
...
>>> for col in xrange(width-1):
... print difference[col:col+(width-1)]
...
[False, False, True, True, False, False, True, False]
[False, True, True, False, False, True, False, False]
[True, True, False, False, True, False, False, False]
[True, False, False, True, False, False, False, True]
[False, False, True, False, False, False, True, True]
[False, True, False, False, False, True, True, False]
[True, False, False, False, True, True, False, False]
[False, False, False, True, True, False, False, True]
4.转换为二值
为了方便哈希值存储和使用,将8个布尔值转换为16进制字符串。Ture变成1,而False变成0。
Python实现
下面是完整Python实现的完成算法:
def dhash(image, hash_size = 8):
# Grayscale and shrink the image in one step.
image = image.convert('L').resize(
(hash_size + 1, hash_size),
Image.ANTIALIAS,
)
pixels = list(image.getdata())
# Compare adjacent pixels.
difference = []
for row in xrange(hash_size):
for col in xrange(hash_size):
pixel_left = image.getpixel((col, row))
pixel_right = image.getpixel((col + 1, row))
difference.append(pixel_left > pixel_right)
# Convert the binary array to a hexadecimal string.
decimal_value = 0
hex_string = []
for index, value in enumerate(difference):
if value:
decimal_value += 2**(index % 8)
if (index % 8) == 7:
hex_string.append(hex(decimal_value)[2:].rjust(2, '0'))
decimal_value = 0
return ''.join(hex_string)
最常见情况,图片稍有不同,哈希值很可能是相同的,所以我们可以直接比较。
>>> from PIL import Image
>>> from utility import dhash, hamming_distance
>>> orig = Image.open('data/cat_grumpy_orig.png')
>>> modif = Image.open('data/cat_grumpy_modif.png')
>>> dhash(orig)
'4c8e3366c275650f'
>>> dhash(modif)
'4c8e3366c275650f'
>>> dhash(orig) == dhash(modif)
True
如果有一
个保存哈希值的SQL数据库, 可以这样简单判断哈希值“4 c8e3366c275650f ”是否存在:
SELECT pk, hash, file_path FROM image_hashes
WHERE hash = '4c8e3366c275650f';
现在,对于一些有较大差别的图像,它们的哈希值可能是不相同的,那么需要计算由一个字符串变成另一个字符串所需替换的最少字符数,即汉明距离。
维基百科上有一些计算两个字符串之间的汉明距离的Python示例代码。但是也可以直接基于MySQL数据库上的计算和查询来实现。
SELECT pk, hash, BIT_COUNT(
CONV(hash, 16, 10) ^ CONV('4c8e3366c275650f', 16, 10)
) as hamming_distance
FROM image_hashes
HAVING hamming_distance < 4
ORDER BY hamming_distance ASC;
对所查询的值与数据库中的哈希值进行异或操作,计数不同位数。由于BIT_COUNT只能操作整数,所以要将所有十六进制的哈希值转成十进制。
结束语
本文使用Python实现了所介绍的算法,当然了读者可以使用任何编程语言实现算法。
在简介中提过,本文算法将应用到Iconfinder上去防止重复提交图标,可以预想,感知哈希算法还有更多实际应用。因为有相似特征的图像的哈希值也是相似的,所以它可以帮助图像推荐系统寻找相似图像。
本文原创发布php中文网,转载请注明出处,感谢您的尊重!
相关文章
相关视频
网友评论
文明上网理性发言,请遵守 新闻评论服务协议我要评论
立即提交
专题推荐独孤九贱-php全栈开发教程
全栈 100W+
主讲:Peter-Zhu 轻松幽默、简短易学,非常适合PHP学习入门
玉女心经-web前端开发教程
入门 50W+
主讲:灭绝师太 由浅入深、明快简洁,非常适合前端学习入门
天龙八部-实战开发教程
实战 80W+
主讲:西门大官人 思路清晰、严谨规范,适合有一定web编程基础学习
php中文网:公益在线php培训,帮助PHP学习者快速成长!
Copyright 2014-2020 https://www.php.cn/ All Rights Reserved | 苏ICP备2020058653号-1