余弦函数导数推导过程_人工智能数学基础----导数

本文介绍了人工智能数学基础中的导数概念,包括一元函数导数的定义、推导过程、高阶导数及常用导数公式。特别讨论了余弦函数的导数,并通过实例展示了求导过程。此外,还强调了数学在人工智能学习中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能数学基础----导数

人工智能数学基础系列文章

  • 1. 人工智能数学基础----导数
  • 2. 人工智能数学基础----矩阵
  • 3. 人工智能数学基础----线性二阶近似

人工智能的学习对于数学要求还是需要一定的功底的,不管是算法还是涉及到的名词概念,都是建立在数学模型的基础上来做训练学习的,所以非常有必要把涉及到的数学知识都理解和梳理一遍,才能把思维从传统的编程方式转变过来。


这里介绍的是 一元函数(标量场)的导数,以后会介绍多元函数(矢量或者多维矩阵场)导数,因为多元函数需要向量和矩阵相关的知识,会先介绍向量和矩阵相关之后,再来详细介绍多元函数导数问题

一、导数

1. 定义

函数导数f'(x0),就是函数f(x)在x0值处的导数,也是函数f(x)在x0这个点的切线斜率,这个点我们这里用P点表示,如图:

4785df3382f3747a6f28219f090246ec.png

2. 求导的推导过程

我们知道高中的时候对于函数斜率的计算公式:y-y0 = m(x - x0),其中m就是函数的斜率。具体我们要怎么求出这斜率值或者导数呢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值