flume数据丢失与重复_Flume基础学习

本文介绍了Flume这款日志采集工具,详细讲解了其Source(如Taildir Source)、Channel(包括Memory Channel、File Channel和Kafka Channel)和Sink(Avro Sink、Kafka Sink)的特性,以及Flume拦截器的作用和启动命令。Flume在数据丢失和重复方面的处理,如Taildir Source的断点续传功能,以及Channel的数据可靠性与性能权衡。文中还提到了大数据处理流程中Flume的角色,即从日志文件到Kafka,再到HDFS的转换过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flume是一款非常优秀的日志采集工具。支持多种形式的日志采集,作为apache的顶级开源项目,Flume再大数据方面具有广泛的应用

首先需要在Flume的解压目录中conf文件夹中将flume-env.sh.templete更改未flume.env.sh

并修改jdk的位置

Source

我们可以从Avro,NetCat。Http,TailDir。我们在Java开发中通常都是使用的log4j等日志工具进行日志按天存储,所以我们重点关注下tailDir Source

Taildir Source

在Flume1.7之前如果想要监控一个文件新增的内容,我们一般采用的source 为 exec tail,但是这会有一个弊端,就是当你的服务器宕机重启后,此时数据读取还是从头开始,这显然不是我们想看到的! 在Flume1.7 没有出来之前我们一般的解决思路为:当读取一条记录后,就把当前的记录的行号记录到一个文件中,宕机重启时,我们可以先从文件中获取到最后一次读取文件的行数,然后继续监控读取下去。保证数据不丢失、不重复。

在Flume1.7时新增了一个source 的类型为taildir,它可以监控一个目录下的多个文件,并且实现了实时读取记录保存的断点续传功能。

但是Flume1.7中如果文件重命名,那么会被当成新文件而被重新采集。

Channel

Memory Channel

Memory Channel把Event保存在内存队列中,该队列能保存的Event数量有最大值上限。由于Event数据都保存在内存中,Memory Channel有最好的性能,不过也有数据可能会丢失的风险,如果Flume崩溃或者重启,那么保存在Channel中的Event都会丢失。同时由于内存容量有限,当Event数量达到最大值或者内存达到容量上限,Memory Channel会有数据丢失。

File Channel

File Channel把Event保存在本地硬盘中,比Memory Channel提供更好的可靠性和可恢复性,不过要操作本地文件,性能要差一些。

Kafka Channel

Kafka Channel把Event保存在Kafka集群中,能提供比File Channel更好的性能和比Memory Channel更高的可靠性。

sink

Avro Sink

Avro Sink是Flume的分层收集机制的重要组成部分。 发送到此接收器的Flume事件变为Avro事件,并发送到配置指定的主机名/端口对。事件将从配置的通道中按照批量配置的批量大小取出。

Kafka Sink

Kafka Sink将会使用FlumeEvent header中的topic和key属性来将event发送给Kafka。如果FlumeEvent的header中有topic属性,那么此event

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值