python如何保存训练好的模型_如何在tensorflow中保存训练好的模型?

我在tensorflow中编写了一个卷积神经网络来处理mnist数据集。一切正常,但我想用列车保护器(). 我该怎么做?

这是我的代码:from __future__ import print_function

import tensorflow as tf

# Import MNIST data

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# Parameters

learning_rate = 0.001

training_iters = 200000

batch_size = 128

display_step = 10

# Network Parameters

n_input = 784 # MNIST data input (img shape: 28*28)

n_classes = 10 # MNIST total classes (0-9 digits)

dropout = 0.75 # Dropout, probability to keep units

# tf Graph input

x = tf.placeholder(tf.float32, [None, n_input])

y = tf.placeholder(tf.float32, [None, n_classes])

keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

# Create some wrappers for simplicity

def conv2d(x, W, b, strides=1):

# Conv2D wrapper, with bias and relu activation

x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')

x = tf.nn.bias_add(x, b)

return tf.nn.relu(x)

def maxpool2d(x, k=2):

# MaxPool2D wrapper

return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],

padding='SAME')

# Create model

def conv_net(x, weights, biases, dropout):

# Reshape input picture

x = tf.reshape(x, shape=[-1, 28, 28, 1])

# Convolution Layer

conv1 = conv2d(x, weights['wc1'], biases['bc1'])

# Max Pooling (down-sampling)

conv1 = maxpool2d(conv1, k=2)

# Convolution Layer

conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])

# Max Pooling (down-sampling)

conv2 = maxpool2d(conv2, k=2)

# Fully connected layer

# Reshape conv2 output to fit fully connected layer input

fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])

fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])

fc1 = tf.nn.relu(fc1)

# Apply Dropout

fc1 = tf.nn.dropout(fc1, dropout)

# Output, class prediction

out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])

return out

# Store layers weight & bias

weights = {

# 5x5 conv, 1 input, 32 outputs

'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),

# 5x5 conv, 32 inputs, 64 outputs

'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),

# fully connected, 7*7*64 inputs, 1024 outputs

'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),

# 1024 inputs, 10 outputs (class prediction)

'out': tf.Variable(tf.random_normal([1024, n_classes]))

}

biases = {

'bc1': tf.Variable(tf.random_normal([32])),

'bc2': tf.Variable(tf.random_normal([64])),

'bd1': tf.Variable(tf.random_normal([1024])),

'out': tf.Variable(tf.random_normal([n_classes]))

}

# Construct model

pred = conv_net(x, weights, biases, keep_prob)

# Define loss and optimizer

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,

labels=y))

optimizer =

tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables

init = tf.initialize_all_variables()

# Launch the graph

with tf.Session() as sess:

sess.run(init)

step = 1

# Keep training until reach max iterations

while step * batch_size < training_iters:

batch_x, batch_y = mnist.train.next_batch(batch_size)

# Run optimization op (backprop)

sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,

keep_prob: dropout})

if step % display_step == 0:

# Calculate batch loss and accuracy

loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,

y: batch_y,

keep_prob: 1.})

print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \

"{:.6f}".format(loss) + ", Training Accuracy= " + \

"{:.5f}".format(acc))

step += 1

print("Optimization Finished!")

# Calculate accuracy for 256 mnist test images

print("Testing Accuracy:", \

sess.run(accuracy, feed_dict={x: mnist.test.images[:256],

y: mnist.test.labels[:256],

keep_prob: 1.}))

在Keras中,你可以使用`model.save()`和`model.load_model()`函数来保存和加载训练好的LSTM模型。以下是基本步骤: 1. **保存模型**: ```python # 在模型训练完毕后,保存模型到文件 if not os.path.exists('saved_models'): os.makedirs('saved_models') # 创建目录存储模型 model_name = 'wine_quality_lstm.h5' # 定义模型文件名 model.save(os.path.join('saved_models', model_name)) ``` 这会把整个模型(包括权重、结构和配置)保存为HDF5格式的文件。 2. **加载模型**: ```python from tensorflow.keras.models import load_model # 如果不是最新版本的Keras,可能需要导入这个函数 # 在需要使用模型的地方,通过文件路径加载 loaded_model = load_model('saved_models/wine_quality_lstm.h5') ``` 请注意,如果你使用的是TensorFlow 2.x并且是Keras API,那么可以直接在`keras.models`中使用`save()`和`load_model()`函数。 另外,如果你想只保存模型的结构而不保存权重(即模型的初始化状态),可以使用`model.to_json()`和`json_to_model()`方法: ```python # 保存模型结构为JSON文件 model_json = model.to_json() with open("saved_models/model_structure.json", "w") as json_file: json_file.write(model_json) # 加载模型结构 json_file = open('saved_models/model_structure.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) ``` 然后你需要使用`load_weights()`方法加载权重: ```python # 加载权重 loaded_model.load_weights("saved_models/model_weights.h5") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值