构造avl树_图解AVL树

本文介绍了AVL树的概念,强调了平衡二叉树在保证搜索效率上的优势。详细阐述了构造AVL树的过程,包括LL型、RR型、LR型、RL型四种旋转方式,以及处理多个不平衡点的情况。此外,还提到了AVL树的删除操作,涵盖删除不同类型的节点。文章以实际例子辅助理解,并设有自测题以巩固知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:AVL树简介

二叉搜索树在一般情况下其搜索的时间复杂度为O(logn),但某些特殊情况下会退化为链表,导致树的高度变大且搜索的时间复杂度变为O(n),发挥不出树这种数据结构的优势,因此平衡二叉树便应运而生,通过保证树的高度来保证查询的时间复杂度为O(logn),想想人类实在是太聪明了!

2:构造AVL树

在构造一棵AVL树的时候如何保持平衡呢?其手段便是通过各种旋转变换来调整以此保证整棵树的高度,调整的原则是左右子树的高度不能大于1的绝对值(平衡因子)先来介绍下旋转的方法吧。

2.1:LL型

当插入元素后构成LL型,如下图所示,则以2为支,高右转,把3右旋下来保证平衡。

e59c0c2cc17c4c0ee483e74c14a22a37.png
2.2:RR型

当插入元素后构成RR型,如下图所示,则以2为支,高左转,把1左旋转下来保证平衡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值