python爬虫框架论文开题报告范文_国内首批UX硕士的开题助手——CHI摘要爬虫

本文介绍了一款用于爬取ACM会议论文信息的Python爬虫程序,该程序能够自动抓取会议名称、论文标题、作者、摘要等内容,并将其整理为Markdown格式文件。通过解析HTML页面,提取所需的数据字段,并利用百度翻译API将英文摘要翻译成中文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from bs4 import BeautifulSoup

import re

import string

import requests

import hashlib

import json

import urllib

import random

# 首先导入需要的模块

# 然后定义获取HTML内容的函数

def getHTMLText(url, code='utf-8'):

try:

headers = {

'User-Agent': 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'

}

r = requests.get(url, headers = headers)

r.raise_for_status()

r.encoding = code

return r.text

except:

return ''

# 这段代码是从网上找的,用来对HTML进行初步清洗,以防使用soup.sibling()的时候出现空白

def bs_preprocess(html):

"""remove distracting whitespaces and newline characters"""

pat = re.compile('(^[\s]+)|([\s]+$)', re.MULTILINE)

html = re.sub(pat, '', html) # remove leading and trailing whitespaces

html = re.sub('\n', ' ', html) # convert newlines to spaces

# this preserves newline delimiters

html = re.sub('[\s]+

html = re.sub('>[\s]+', '>', html) # remove whitespaces after closing tags

return html

# 定义寻找会议名称以及地点的函数,并且替换字符串中不适合做文件名的符号

def conference_name(soup):

name = soup.find_all('table', class_='medium-text')[4].get_text()

exclude = set(string.punctuation)

name = ''.join(ch for ch in name if ch not in exclude)

return ''.join(name.split())

# 下面这几个函数可能会有些费解,因为爬取网页中的id或者class很少,所以只能根据其他的属性判断内容

# session是会议中的分主题,一个session下会有若干文章,以下函数判断一个session中有几篇文章

def how_much_articles(soup):

i = 0

try:

soup = soup.next_sibling

while not is_session(soup):

if is_title(soup):

soup = soup.next_sibling

i += 1

else:

soup = soup.next_sibling

except:

print('last session')

return i

# 判断一个标签的内容是不是session

def is_session(soup):

try:

if soup.find('td', colspan='2'):

return True

except:

return False

# 判断一个标签是不是包含文章标题

def is_title(soup):

try:

if soup.find('td', colspan='1'):

return True

else:

return False

except:

return False

# 判断一个标签是不是包含文章摘要

def is_abstract(soup):

try:

if soup.find('span', id=True):

return True

else:

return False

except:

return False

# 提取标签中的文章标题

def find_title(soup):

try:

return soup.find('a').text

except:

print('where is the title???????????????????????????????????')

return 'can not find title'

# 提取文章标题中的原文链接

def find_link(soup):

try:

return 'https://dl.acm.org/' + soup.find('a')['href']

except:

print('can not find link')

return 'can not find link'

# 以列表的形式提取作者

def find_author(soup):

authors = []

for author in soup.find_all('a'):

authors.append(author.text)

return authors

# 提取文章的页码

def find_pages(soup):

try:

return soup.find('span').text[7:]

except:

print('can not find pages')

return 'can not find pages'

# 提取文章的摘要

def find_abstract(pages_soup):

try:

pages_soup.find('span', id=re.compile("toHide")).get_text()

except:

return ''

# 定义翻译函数,调用百度翻译的API,appid和secret_key请自行申请(免费的)

def translate(q):

appid = 'your_appid'

secretKey = 'your_secretKey'

my_url = 'http://api.fanyi.baidu.com/api/trans/vip/translate'

fromLang = 'en'

toLang = 'zh'

salt = random.randint(32768, 65536)

sign = appid + q + str(salt) + secretKey

m1 = hashlib.md5()

m1.update(sign.encode())

sign = m1.hexdigest()

my_url = my_url + '?appid=' + appid + '&q=' + urllib.parse.quote(

q) + '&from=' + fromLang + '&to=' + toLang + '&salt=' + str(salt) + '&sign=' + sign

try:

r = requests.get(my_url)

response = r.content

json_data = json.loads(response)

return json_data['trans_result'][0]['dst']

except Exception as e:

return str(e)

# 以下就是主函数了,输入会议的url,输出内容的Markdown

def download_proceedings(url):

html = getHTMLText(url, code='utf-8')

html = bs_preprocess(html)

# 建立soup

soup = BeautifulSoup(html, 'html.parser')

print('soup ok')

file_name = conference_name(soup)[24:]

# 寻找文章的列表

articles_table = soup.find_all(class_="text12")[1]

print('articles_table ok')

session_tds = articles_table.find_all('td', colspan='2')

article_tds = articles_table.find_all('td', colspan='1')

session_num = len(session_tds)

article_num = len(article_tds)

print('{}sessions {}articles'.format(str(session_num), str(article_num)))

articles = []

article_from = 0

# 早期的年份没有session,所以增加if判断,session为零就直接下载文章

if session_num:

for i in range(session_num):

abstract_steps = i+2

session_name = session_tds[i].parent.get_text()

num_of_articles = how_much_articles(session_tds[i].parent)

article_to = article_from + num_of_articles

for i in range(article_from, article_to):

article_info = {}

title_tr = article_tds[i].parent

article_info['session'] = session_name

article_info['title'] = find_title(title_tr)

article_info['link'] = find_link(title_tr)

#print('title and link found')

article_info['author'] = find_author(title_tr.next_sibling)

article_info['pages'] = find_pages(title_tr.next_sibling.next_sibling)

try:

article_info['abstract'] = soup.find('span', id='toHide{}'.format(str(i + abstract_steps))).get_text()

except:

article_info['abstract'] = 'can not find Abstract'

print('can not find abstract')

articles.append(article_info)

print('{} article{} finish'.format(session_name, str(i+1)))

article_from = article_to

# 有session的会议中,第一个标签一定是session,然后判断此session有几篇文章,借此确定文章列表的索引范围,依次迭代

else:

for i in range(article_num):

article_info = {}

title_tr = article_tds[i].parent

article_info['title'] = find_title(title_tr)

article_info['link'] = find_link(title_tr)

#print('title and link found')

article_info['author'] = find_author(title_tr.next_sibling)

article_info['pages'] = find_pages(title_tr.next_sibling.next_sibling)

try:

article_info['abstract'] = soup.find('span', id='toHide{}'.format(str(i + 1))).get_text()

except:

article_info['abstract'] = 'can not find Abstract'

print('can not find abstract')

articles.append(article_info)

print('article{} finish'.format(str(i+1)))

with open("{}.md".format(file_name), "w") as f:

for i in range(len(articles)):

f.write('### {}. '.format(str(i+1))+articles[i]['title']+'\n')

f.write('*'+articles[i]['session']+'*\n\n')

f.write(articles[i]['abstract']+'\n\n')

f.write('>'+translate(articles[i]['abstract'])[0]+ '\n')

f.write('>[article link](' + articles[i]['link']+')\n\n')

if __name__ == '__main__':

# 如果想要批量下载,就把所有连接做成url列表,用for循环来保存

url = 'https://dl.acm.org/citation.cfm?id=3025453&preflayout=flat'

download_proceedings(url)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值