python使用loaddata_Python data.load_data方法代码示例

Python数据加载:data.load_data用法实例
本文展示了如何在Python中使用`load_data`方法加载数据,特别是在LSTM模型训练中的应用。代码导入了必要的模块,并通过`load_data`函数从文件"data/household_power_consumption.txt"中加载数据,用于训练和测试LSTM模型预测电力消耗。
部署运行你感兴趣的模型镜像

# 需要导入模块: import data [as 别名]

# 或者: from data import load_data [as 别名]

def run_lstm(model, sequence_length, prediction_steps):

data = None

global_start_time = time.time()

epochs = 1

ratio_of_data = 1 # ratio of data to use from 2+ million data points

path_to_dataset = 'data/household_power_consumption.txt'

if data is None:

print('Loading data... ')

x_train, y_train, x_test, y_test, result_mean = load_data(path_to_dataset, sequence_length,

prediction_steps, ratio_of_data)

else:

x_train, y_train, x_test, y_test = data

print('\nData Loaded. Compiling...\n')

if model is None:

model = build_model(prediction_steps)

try:

model.fit(x_train, y_train, batch_size=128, epochs=epochs, validation_split=0.05)

predicted = model.predict(x_test)

# predicted = np.reshape(predicted, (predicted.size,))

model.save('LSTM_power_consumption_model.h5') # save LSTM model

except KeyboardInterrupt: # save model if training interrupted by user

print('Duration of training (s) : ', time.time() - global_start_time)

model.save('LSTM_power_consumption_model.h5')

return model, y_test, 0

else: # previously trained mode is given

print('Loading model...')

predicted = model.predict(x_test)

plot_predictions(result_mean, prediction_steps, predicted, y_test, global_start_time)

return None

您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值