# 需要导入模块: import data [as 别名]
# 或者: from data import load_data [as 别名]
def run_lstm(model, sequence_length, prediction_steps):
data = None
global_start_time = time.time()
epochs = 1
ratio_of_data = 1 # ratio of data to use from 2+ million data points
path_to_dataset = 'data/household_power_consumption.txt'
if data is None:
print('Loading data... ')
x_train, y_train, x_test, y_test, result_mean = load_data(path_to_dataset, sequence_length,
prediction_steps, ratio_of_data)
else:
x_train, y_train, x_test, y_test = data
print('\nData Loaded. Compiling...\n')
if model is None:
model = build_model(prediction_steps)
try:
model.fit(x_train, y_train, batch_size=128, epochs=epochs, validation_split=0.05)
predicted = model.predict(x_test)
# predicted = np.reshape(predicted, (predicted.size,))
model.save('LSTM_power_consumption_model.h5') # save LSTM model
except KeyboardInterrupt: # save model if training interrupted by user
print('Duration of training (s) : ', time.time() - global_start_time)
model.save('LSTM_power_consumption_model.h5')
return model, y_test, 0
else: # previously trained mode is given
print('Loading model...')
predicted = model.predict(x_test)
plot_predictions(result_mean, prediction_steps, predicted, y_test, global_start_time)
return None
Python数据加载:data.load_data用法实例
本文展示了如何在Python中使用`load_data`方法加载数据,特别是在LSTM模型训练中的应用。代码导入了必要的模块,并通过`load_data`函数从文件"data/household_power_consumption.txt"中加载数据,用于训练和测试LSTM模型预测电力消耗。
1351

被折叠的 条评论
为什么被折叠?



