“Phi”我相信你的意思是你想估计的概率密度函数(pdf)。在这种情况下,协方差矩阵应为M×M并且输出披将NX1:
# -*- coding: utf-8 -*-
import numpy as np
N = 1024
M = 8
var = 0.5
# Creating a Xtrain NxM observation matrix.
# Its muVector is [0, 1, 2, 3, 4, 5, 6, 7] and the variance for all
# independent random variables is 0.5.
Xtrain = np.random.multivariate_normal(np.arange(8), np.eye(8,8)*var, N)
# Estimating the mean vector.
muVector = np.mean(Xtrain, axis=0)
# Creating the estimated covariance matrix and its inverse.
cov = np.eye(M,M)*var
inv_cov = np.linalg.inv(cov)
# Normalization factor from the pdf.
norm_factor = 1/np.sqrt((2*np.pi)**M * np.linalg.det(cov))
# Estimating the pdf.
Phi = np.ones((N,1))
for row in range(N):
temp = Xtrain[row,:] - muVector
temp.shape = (1,M)
temp = np.dot(-0.5*temp, inv_cov)
temp = np.dot(temp, (Xtrain[row,:] - muVector))
Phi[row] = norm_factor*np.exp(temp)
或者,也可以使用pdf方法从scipy.stats.multivariate_normal:
# -*- coding: utf-8 -*-
import numpy as np
from scipy.stats import multivariate_normal
N = 1024
M = 8
var = 0.5
# Creating a Xtrain NxM observation matrix.
# Its muVector is [0, 1, 2, 3, 4, 5, 6, 7] and the variance for all
# independent random variables is 0.5.
Xtrain = np.random.multivariate_normal(np.arange(8), np.eye(8,8)*var, N)
# Estimating the mean vector.
muVector = np.mean(Xtrain, axis=0)
# Creating the estimated covariance matrix.
cov = np.eye(M,M)*var
Phi2 = multivariate_normal.pdf(Xtrain, mean=muVector, cov=cov)
两个Phi和Phi2输出阵列将等于。