如何在python中表示微分_Python实现自动微分(Automatic Differentiation)

自动微分是机器学习中计算梯度的重要工具,本文介绍了自动微分的概念和计算方法,包括手动求解、数值微分、符号微分和自动微分。通过示例展示了Python中实现自动微分的原理,包括正向模式和反向模式,并提供了简单的Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是自动微分

自动微分(Automatic Differentiation)是什么?微分是函数在某一处的导数值,自动微分就是使用计算机程序自动求解函数在某一处的导数值。自动微分可用于计算神经网络反向传播的梯度大小,是机器学习训练中不可或缺的一步。

如何计算微分

微分计算离不开数学求导,如果你还对高等数学有些印象,大概记得如下求导公式:常见求导公式

这些公式难免让人头大,好在自动微分就是帮助我们“自动”解决微分问题的。机器学习平台如TensorFlow、PyTorch都实现了自动微分,使用非常的方便,不过有必要理解其原理。要理解“自动微分”,需要先理解常见的求解微分的方式,可分为以下四种:手动求解法(Manual Differentiation)

数值微分法(Numerical Differentiation)

符号微分法(Symbolic Differentiation)

自动微分法(Automatic Differentiation)

手动求解法

所谓手动求解法就是手动算出求导公式,然后将公式编写成计算机代码完成计算。比如对于函数

求微分,首先根据求导公式表找出其导数函数

,然后将这个公式写成计算机程序,对于任意的输入

都能用这段程序求出其导数,也就是此时的微分。是不是很简单?

这样做虽然直观,但却有两个明显的缺点:每次都要根据手动算出求导公式然后编写代码,导致程序很难复用。

更让人难受的是,复杂的函数普通人很难轻易写出求导公式

于是引出数值微分法。

数值微分法

数值微分法直接根据微分的极限定义形式:

只需要在

附近区一个很小的

(比如 0.00001),分别计算

的值,然后做一个减法和除法就能得到此时的微分了,非常的直观。无论

是多么复杂的函数都可以带入上述公式求得微分。

该方法的缺陷是计算量太大,并且存在roundoff error和truncation error的问题。现实中仅仅常用它来验证其他自动微分程序的正确性,而不用于实际生产。

符号微分法

回顾“手动求解法”能联想到将常见求导公式写成固有函数,直接调用岂不是更方便?在此基础上基于链式求导法则对复杂公式求导,岂不是就解决了全部问题!链式求导法则

来看一下实际效果,下表展示了几个函数的符号微分公式:符号微分公式

上图中第一列是原函数,第二列是符号微分法的计算公式,第三列是第二列的数学简化。即使是简化之后,微分计算公式也还要比原函数要复杂(更大的计算量)!所以这个方法也是理论上可行,实际上并不会采用。

自动微分

自动微分同时结合了“数值微分”和“符号微分”的长处,既对于已知函数直接采用数值微分法求取微分,并作为中间结果保存;对于组合函数采用符号微分法将公示展开,并将上一步数值微分的中间结果代入,二者结合降低了求解和计算的复杂度。

举个栗子,对于下列函数求解微分:

将上述公式转换为计算图:计算图

上图中每个圈圈表示操作产生中间结果,下标顺序表示他们的计算顺序。根据计算图我们一步步来计算函数的值,如下表所示,其中左侧表示数值计算过的过程,右侧表示梯度计算过程:梯度求解过程(Forward mod)

表中计算了函数在

这一点的函数值和

的偏导数,整个计算过程结合者上图很容易理解。最终计算出

处的偏导数是5.5。如果要计算

的偏导数,还需要再重新计算一遍。相信你已经发现问题了:有多少个输入参数,这种偏导数计算流程就要执行多少遍。

有没有办法优化呢?答案是肯定的。就是将微分反向计算,把上面计算图的连线反向就得到了反向计算图:计算图

反向求微分流程如下:自动微分(Reverse mode)

反向微分的好处是一次可以算出所有输入参数的偏导数,比如

处的偏导数分别是5.5和1.716。

Python代码实现

采用python代码实现自动微分程序。其中有三个关键类:Op表示各种具体的操作,包括操作本身的计算和梯度计算。仅仅表示计算不保存操作的输入和状态,对应上面图中的一条边。

Node用于保存计算的状态,包括计算的输入参数、结果、梯度。每一次Op操作会产生新的Node,对应上面图中的一个圈圈。

Executor表示整个执行链路,用于正向对整个公式(在TensorFlow中叫做graph)求值以及反向自动微分。

为便于演示我们采用了eager执行的模式,既每个Node的值都是立即求得的。实际TensorFlow采用的是lazy模式,既首先构建公式然后再整体求值,这么做可以方便进行剪枝等优化操作,但不方便调试。

lazy模式的执行方式为,首先对计算图进行拓扑排序,然后按照拓扑排序的顺序从前往后依次求值。代码中Executor.run()方法演示了这个过程。其实着整个程序已经不仅仅是“自动微分”的演示了,而是tf图计算流程的演示,包括前向和后向(真实的算法模型中会使用更多种类的Op、模型本身也会更加复杂,但求解流程类似)

# -* encoding:utf-8 *-

import math

class Node(object):

"""表示具体的数值或者某个Op的数据结果。"""

global_id = -1

def __init__(self, op, inputs):

self.inputs = inputs # 产生该Node的输入

self.op = op # 产生该Node的Op

self.grad = 0.0 # 初始化梯度

self.evaluate() # 立即求值

# 调试信息

self.id = Node.global_id

Node.global_id += 1

print("eager exec:%s" % self)

def input2values(self):

""" 将输入统一转换成数值,因为具体的计算只能发生在数值上 """

new_inputs = []

for i in self.inputs:

if isinstance(i, Node):

i = i.value

new_inputs.append(i)

return new_inputs

def evaluate(self):

self.value = self.op.compute(self.input2values())

def __repr__(self):

return self.__str__()

def __str__(self):

return "Node%d:%s%s=%s, grad:%.3f" % (

self.id, self.input2values(), self.op.name(), self.value, self.grad)

class Op(object):

"""所有操作的基类。注意Op本身不包含状态,计算的状态保存在Node中,每次调用Op都会产生一个Node。"""

def name(self):

pass

def __call__(self):

""" 产生一个新的Node,表示此次计算的结果 """

pass

def compute(self, inputs):

""" Op的计算 """

pass

def gradient(self, output_grad):

""" 计算梯度 """

pass

class AddOp(Op):

"""加法运算"""

def name(self):

return "add"

def __call__(self, a, b):

return Node(self, [a, b])

def compute(self, inputs):

return inputs[0] + inputs[1]

def gradient(self, inputs, output_grad):

return [output_grad, output_grad] # gradient of a and b

class SubOp(Op):

"""减法运算"""

def name(self):

return "sub"

def __call__(self, a, b):

return Node(self, [a, b])

def compute(self, inputs):

return inputs[0] - inputs[1]

def gradient(self, inputs, output_grad):

return [output_grad, -output_grad]

class MulOp(Op):

"""乘法运算"""

def name(self):

return "mul"

def __call__(self, a, b):

return Node(self, [a, b])

def compute(self, inputs):

return inputs[0] * inputs[1]

def gradient(self, inputs, output_grad):

return [inputs[1] * output_grad, inputs[0] * output_grad]

class LnOp(Op):

"""自然对数运算"""

def name(self):

return "ln"

def __call__(self, a):

return Node(self, [a])

def compute(self, inputs):

return math.log(inputs[0])

def gradient(self, inputs, output_grad):

return [1.0/inputs[0] * output_grad]

class SinOp(Op):

"""正弦运算"""

def name(self):

return "sin"

def __call__(self, a):

return Node(self, [a])

def compute(self, inputs):

return math.sin(inputs[0])

def gradient(self, inputs, output_grad):

return [math.cos(inputs[0]) * output_grad]

class IdentityOp(Op):

"""输入输出一样"""

def name(self):

return "identity"

def __call__(self, a):

return Node(self, [a])

def compute(self, inputs):

return inputs[0]

def gradient(self, inputs, output_grad):

return [output_grad]

class Executor(object):

""" 计算图的执行和自动微分 """

def __init__(self, root):

self.topo_list = self.__topological_sorting(root) # 拓扑排序的顺序就是正向求值的顺序

self.root = root

def run(self):

"""按照拓扑排序的顺序对计算图求值。注意:因为我们之前对node采用了eager模式,实际上每个node值之前已经计算好了,但为了演示lazy计算的效果,这里使用拓扑排序又计算了一遍。"""

node_evaluated = set() # 保证每个node只被求值一次

print("\nEVALUATE ORDER:")

for n in self.topo_list:

if n not in node_evaluated:

n.evaluate()

node_evaluated.add(n)

print("evaluate:%s" % n)

return self.root.value

def __dfs(self, topo_list, node):

if Node == None or not isinstance(node, Node):

return

for n in node.inputs:

self.__dfs(topo_list, n)

topo_list.append(node) # 同一个节点可以添加多次,他们的梯度会累加

def __topological_sorting(self, root):

"""拓扑排序:采用DFS方式"""

lst = []

self.__dfs(lst, root)

return lst

def gradients(self):

reverse_topo = list(reversed(self.topo_list)) # 按照拓扑排序的反向开始微分

reverse_topo[0].grad = 1.0 # 输出节点梯度是1.0

for n in reverse_topo:

grad = n.op.gradient(n.input2values(), n.grad)

# 将梯度累加到每一个输入变量的梯度上

for i, g in zip(n.inputs, grad):

if isinstance(i, Node):

i.grad += g

print("\nAFTER AUTODIFF:")

for n in reverse_topo:

print(n)

# 开始验证程序

add, mul, ln, sin, sub, identity = AddOp(), MulOp(), LnOp(), SinOp(), SubOp(), IdentityOp()

x1, x2 = identity(2.0), identity(5.0)

y = sub(add(ln(x1), mul(x1, x2)), sin(x2)) # y = ln(x1) + x1*x2 - sin(x2)

ex = Executor(y)

print("y=%.3f" % ex.run())

ex.gradients() # 反向计算 自动微分

print("x1.grad=%.3f" % x1.grad)

print("x2.grad=%.3f" % x2.grad)

输出如下:

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值