欢迎来到《每周CV论文》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
图像对比度增强,即增强图像中的有用信息,抑制无用信息,从而改善图像的视觉效果,今天给大家推荐初学该领域必须要读的文章。
作者&编辑 | 言有三
1 Fast image processing with FCN
卷积神经网络模型拥有强大的表达能力,被证明可以直接学会图像里的很多全局和局部的操作,包括图像风格迁移、去雾、上色、增加细节等,因此我们可以按照需要学习的类型,准备好相关的成对数据进行学习,而编解码模型就可以直接使用。
文章引用量:80+
推荐指数:✦✦✦✦✧
[1] Chen Q, Xu J, Koltun V. Fast image processing with fully-convolutionalnetworks[C]//Proceedings of the IEEE International Conference on ComputerVision. 2017: 2497-2506.
2 Perceptual image enhancement
对比度、色调调整等图像增强操作的最终目标是为了提高目标图像的美感,因此我们可以使用美学模型来辅助完成该任务。
文章引用量:10+
推荐指数:✦✦✦✦✧

本文推荐了初学者必读的图像对比度增强领域论文,涉及FCN、Perceptual Image Enhancement、Deep Retinex、DSLR GAN等技术,探讨了如何使用深度学习提升图像质量和美感。
最低0.47元/天 解锁文章
2209

被折叠的 条评论
为什么被折叠?



