计算机英语教案模板,全英文英语教案模板.doc

本文探讨了阅读教学的互动理论,将阅读过程分为预读、阅读中和读后三个阶段,强调上下文结合的方法来提升学生的语言能力和阅读策略。教材选自NSEFC模块2单元的阅读部分,话题涉及学生已知领域,但包含一些新词汇和短语。学生为高一,具备一定的英语基础和理解能力,对主题熟悉但词汇量有限。教学目标是提高语言技能,通过预读找出文章主要内容,增强阅读理解能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PAGE

7 -

Lesson plan

NSEFC Module2 Unit Reading In

Teacher:

Period:Period1

Type:Reading

Duration: 45minutes

Teaching ideology

The current theory view reading as a interactive process which involves not only the printed page but also the reader’s old knowledge of the language in general, the world and the text types. In the reading process, these factors interact with each other and compensate for each other. Based on the understanding of reading as an interactive process, teaching reading in the classroom is divided into three stages in which the top-down and bottom-up techniques integrated to develop the students language efficiency in general and reading strategies. The three stages are pre-reading, while-reading and post-reading.

Teaching material and learning condition

The analysis of teaching material

The teaching material is the reading part from NSEFC Module2 Unit . The topic of this unit is . This passage mainly introduces . The passage consists of paragraphs. The first paragraph is a general introduction of the . Para.2 to Para.4 introduces . The last paragraph tells about . The topic is not new to the Ss. But there is some new words and phases in the passage.

The analysis of learning condition

The students are from grade1 in senior high school. As high school students, they have achieved certain English level and they have the ability to get the basic idea of the reading. Since they are in grade1, they are easily activated and want to air their own opinions on the topic. They are familiar with the topic of and know some . But they may not know before. Moreover, their vocabulary is limited so they may have difficulties in understanding some sentences.

Learning objectives

1. Language skills

At the beginning of the class, Ss can predict the content of the passage based on the title.

Ss can scan the passage and find out the specific information suc

SQL Prompt是Red Gate Software公司开发的一款强大的SQL代码编辑和优化工具,主要面向数据库开发者和管理员。版本11.0.1.16766是一个更新版本,它提供了更高效、更便捷的SQL编写环境,旨在提升SQL代码的可读性、效率和一致性。这个安装包包含了所有必要的组件,用于在用户的计算机上安装SQL Prompt工具。 SQL Prompt的核心功能包括自动完成、智能提示、格式化和重构。自动完成功能能够帮助用户快速输入SQL语句,减少键入错误;智能提示则基于上下文提供可能的选项,加快编写速度;格式化功能允许用户按照自定义或预设的编码规范对SQL代码进行美化,提升代码的可读性;而重构工具则可以帮助用户优化代码结构,消除潜在问题。 在描述中提到的“代码格式化规则来源于网络”,指的是用户可以通过下载网络上的json文件来扩展或定制SQL Prompt的代码格式化规则。这些json文件包含了特定的格式设置,如缩进风格、空格使用、注释位置等。将这些文件复制到指定的目录(例如:C:\Users\用户名\AppData\Local\Red Gate\SQL Prompt 10\Styles)后,SQL Prompt会读取这些规则并应用到代码格式化过程中,使得用户可以根据个人偏好或团队规范调整代码样式。 以下几点请注意: 1. 经实测,此版本支持最新的Sql Server 2022版的SSMS21 2. 此安装包中不包括keygen,请自行解决
引言 非线性函数极值寻优是工程优化和科学计算中的核心问题,传统方法在处理高维、多峰或不可导函数时往往效果不佳。神经网络与遗传算法的结合为解决这类复杂优化问题提供了新思路。本文将从计算机专业角度,详细分析神经网络遗传算法在非线性函数极值寻优中的原理、实现方法及优化策略。 混合算法原理与架构 遗传算法(GA)与神经网络(NN)的混合架构充分发挥了两者的优势:神经网络提供强大的非线性拟合能力,遗传算法则提供全局搜索能力。该混合系统的工作流程可分为三个关键阶段: 神经网络建阶段:构建BP神经网络结构(如2-5-1),通过训练数据学习目标函数的输入输出关系。激活函数通常选择Sigmoid或ReLU,损失函数采用均方误差(MSE)。 遗传算法优化阶段:将神经网络参数编码为染色体(实数编码),以网络预测精度作为适应度函数fitness = 1/(1+MSE)。通过选择、交叉(概率0.4-0.9)和变异(概率0.01-0.2)操作进化种群。 协同优化阶段:遗传算法优化后的参数初始化神经网络,再进行BP微调,形成"全局搜索+局部优化"的双重机制。 关键技术实现 神经网络建 采用MATLAB的Neural Network Toolbox实现,关键步骤包括: net = feedforwardnet([5]); % 单隐藏层5神经元 net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法 net = train(net, input, target); % 网络训练 遗传算法优化 适应度函数设计与参数编码是核心: function fitness = ga_fitness(x) = sim(net, x'); % 神经网络预测 fitness = 1/(1+mse(y-target)); end 种群规建议50-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值