980 Unique Paths III

1 题目

On a 2-dimensional grid, there are 4 types of squares:

  • 1 represents the starting square.  There is exactly one starting square.
  • 2 represents the ending square.  There is exactly one ending square.
  • 0 represents empty squares we can walk over.
  • -1 represents obstacles that we cannot walk over.

Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

Example 1:

Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

2 尝试解

2.1 分析

在二维矩阵中,1代表起点,2代表终点,-1代表障碍物,0代表可通行。问从起点到终点,经过所有可通行位置一次且仅一次,求这样的路径数。

典型的深度优先搜索算法。首先统计所有可通行位置的总数total。然后从起点开始,向上下左右各采用深度优先搜索dfsPath(i,j,length,total),表示从当前位置[i,j]开始,步数为length,

如果当前位置越界,返回0

如果当前位置为-1或者1,返回0

如果当前位置为2,统计走过的步数length,如果length == total,此路径满足要求,返回1。

如果当前位置为0,将当前位置设为1,result = dfsPath(i-1,j,length+1,total)+dfsPath(i+1,j,length+1,total)+dfsPath(i,j-1,length+1,total)+dfsPath(i,j+1,length+1,total),然后重置当前位置为0,返回result

2.2 代码

class Solution {
public:
    int dfsPath(vector<vector<int>>&grid,int i, int j, int length, int total){
        if(i <0 || i >= grid.size() || j <0 || j>= grid[0].size() || grid[i][j] == -1)   return 0;
        if(grid[i][j] == 2) {
            return (length == total?1:0);
        }
        if(grid[i][j] == -1 || grid[i][j] == 1) return 0;
        grid[i][j] = 1;
        int result = 0;
        result = dfsPath(grid,i-1,j,length+1,total)+dfsPath(grid,i+1,j,length+1,total)+dfsPath(grid,i,j-1,length+1,total)+dfsPath(grid,i,j+1,length+1,total);
        grid[i][j] = 0;
        return result;
    }
    int uniquePathsIII(vector<vector<int>>& grid) {
        int total = 0;
        int result = 0;
        for(int i = 0; i < grid.size(); i++){
            for(int j = 0; j < grid[0].size(); j++){
                if(grid[i][j] == 0)
                    total += 1;
            }
        }
        for(int i = 0; i < grid.size(); i++){
            for(int j = 0; j < grid[0].size(); j++){
                if(grid[i][j] == 1)
                    result += dfsPath(grid,i-1,j,0,total)+dfsPath(grid,i+1,j,0,total)+dfsPath(grid,i,j-1,0,total)+dfsPath(grid,i,j+1,0,total);
            }
        }
        return result;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值