成功效果图:
实现步骤如下:
注意事项:
要把数据集t10k-images.idx3-ubyte.gz解压到python文件当前目录下:
代码中将转化后的的图片存储在test目录下,所有要在当前目录创建个“test”文件夹。否则运行会提示目录不存在。
完成以上工作之后直接运行以下代码即可:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from PIL import Image
import struct
def read_image(filename):
f = open(filename, 'rb')
index = 0
buf = f.read()
f.close()
magic, images, rows, columns = struct.unpack_from('>IIII', buf, index)
index += struct.calcsize('>IIII')
for i in range(images):
# for i in xrange(2000):
image = Image.new('L', (columns, rows))
for x in range(rows):
for y in range(columns):
image.putpixel((y, x), int(struct.unpack_from('>B', buf, index)[0]))
index += struct.calcsize('>B')
print
'save ' + str(i) + 'image'
image.save('test/' + str(i) + '.png')
def read_label(filename, saveFilename):
f = open(filename, 'rb')
index = 0
buf = f.read()
f.close()
magic, labels = struct.unpack_from('>II', buf, index)
index += struct.calcsize('>II')
labelArr = [0] * labels
# labelArr = [0] * 2000
for x in range(labels):
# for x in xrange(2000):
labelArr[x] = int(struct.unpack_from('>B', buf, index)[0])
index += struct.calcsize('>B')
save = open(saveFilename, 'w')
save.write(','.join(map(lambda x: str(x), labelArr)))
save.write('\n')
save.close()
print('save labels success')
if __name__ == '__main__':
read_image('t10k-images.idx3-ubyte')
read_label('t10k-labels.idx1-ubyte', 'test/label.txt')
运行成功后可以去“test”文件夹看转化后的图片。
完成!有疑问或者运行不成功请留言。