Coursera 深度学习笔记 I.Neural Networks and Deep learning-01介绍

01. Introduction to Deep learning

1. What is a neural network

example 1-Single neural network

Housing price prediction

  • linear regression problem

  • ReLU (Rectified Linear Unit 修正线性单元) function
    在这里插入图片描述

  • A “Neuron” is what connects the input(x=size) with the output(y=price)

  • 在这里插入图片描述

example 2-Multiple neural network

  • other features besides size, should also be taken into account
  • input layer -> hidden unit->y
    在这里插入图片描述

2. Supervised learning with Neural Networks

supervised learning-> given correct output matching input data

I. regression & classification problems

  • regression
    • predict results within a continuous output->map input variables to some continuous function
  • classification
    • discrete output->discrete categories

II. Types of Neural Network

  • Concolution Neural Network(CNN)
    • images
  • Recurrent Neural Network(RNN)
    • one-dimentional sequence data
    • e.g. translation, speech recognition
  • hybrid neural network architecture
    • e.g. autonomous driving

III. Structured vs. unstructured data

  • Structured data:
    • have well-defined features such as price, age
  • Unstructured data:
    • e.g. pixel, raw audio, text

3. Why is Deep learning taking off

Due to

  • a large amount of data available through the digitization of the society
  • faster computation
  • innovation in the development of neural network algorithm

4. (unwatched) Geoffrey Hinton interview

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值