概率模拟(sigmoid、softmax)

1. sigmoid

1.1 sigmoid 定义

  • Sigmoid函数,也称为 S形函数Logistic Function ,是一种在机器学习和深度学习中广泛使用的激活函数。它的数学表达式通常定义为:
    σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1

1.2 sigmoid 主要特性

  • 输出范围:Sigmoid函数的输出值域是(0, 1),这意呀着它可以将任何实数映射到(0, 1)的区间内,这个特性非常适合处理二分类问题,其中输出可以解释为属于某一类的概率。
  • 单调性:Sigmoid函数在其定义域内是单调递增的,即当输入x增大时,输出σ(x)也增大。
  • 导数:Sigmoid函数的导数可以用它自身来表示,即
    σ ′ ( x ) = σ ( x )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MechMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值