Lasso Regression

本文介绍了Lasso回归和Ridge回归的概念、损失函数及应用场景。Lasso回归利用L1正则化项,能有效减小回归系数甚至使部分系数归零,适合参数缩减和选择;而Ridge回归采用L2正则化,保持所有变量但缩小系数,提高模型稳定性。两者分别解决了过拟合和模型变量过多的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先引入岭回归的概念:

岭回归(英文名:ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法

岭回归的原理:

对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为“病态矩阵”。有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态。
对于高斯消去法来说,如果主元(即对角线上的元素)上的元素很小,在计算时就会表现出病态的特征。
回归分析中常用的最小二乘法是一种无偏估计。对于一个适定问题,X通常是列满秩的
采用最小二乘法,定义损失函数为残差的平方,最小化损失函数
上述优化问题可以采用梯度下降法进行求解,也可以采用如下公式进行直接求解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值