时间复杂度

  • O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
  • O(1) 常数阶 < O(logn) 对数阶 < O(n) 线性阶 < O(nlogn) < O(n^2) 平方阶 < O(n^3) < { O(2^n) < O(n!) < O(n^n) }
  • 括号中的三个复杂度耗费时间巨大,如果算法为以上三个时间复杂度,应修改。
  • 我们先考虑O(logx(n))和O(logy(n)),x!=y,我们是在考虑n趋于无穷的情况。求当n趋于无穷大时logx(n)/logy(n)的极限可以发现,极限等于lny/lnx,也就是一个常数,也就是说,在n趋于无穷大的时候,这两个东西仅差一个常数。所以从研究算法的角度log的底数不重要。 
  • 例如二分法执行的步数为,2^x=N,所以时间复杂度为O(logN)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值